EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
1st Edition
ISBN: 9781337684668
Author: Katz
Publisher: VST
Question
Book Icon
Chapter 34, Problem 77PQ
To determine

The equations for the electric field and the magnetic field of the wave.

Expert Solution & Answer
Check Mark

Answer to Problem 77PQ

The equation for the electric field is E=(1.44×104V/m)sin[(1.01×107m1)z(3.02×1015rad/s)t] and the equation for the magnetic field is B=(48.0×106T)sin[(1.01×107m1)z(3.02×1015rad/s)t].

Explanation of Solution

Write the expression for the frequency of an electromagnetic wave.

    f=cλ                                                              (I)

Here c is the speed of light and f is the frequency of light and λ is the wavelength.

Write the expression for the angular frequency of the wave.

    ω=2πf                                                         (II)

Here, ω is the angular frequency and f is the frequency of the wave.

Write the expression for the wave number of the wave.

    k=2πλ                                                         (III)

Here, k is the wave number and λ is the wavelength of the wave.

Write the expression for the maximum electric field.

    Emax=cBmax                                                         (IV)

Here, Emax is the maximum electric field, c is the speed of light and Bmax is the maximum magnetic field.

Write the expression for the electric field of an electromagnetic wave.

    EZ=Emaxsin(kxωt)V/m                                                          (V)

Write the expression for the magnetic field of an electromagnetic wave.

    BZ=Bmaxsin(kxωt)T                                                           (VI)

Conclusion:

Substitute 3×108m/s for c and 625nm for λ in equation (I) to find f.

    f=3×108m/s(625nm×109m1nm)

  =4.8×1014Hz

Substitute equation (I) in the equation (II) to find ω.

    ω=2π(4.8×1014)=3.01×1015rad/s

Substitute 625nm for λ in the (III)equation to find k.

    k=2π(625nm×109m1nm)=1.01×107m1

Substitute 48.0μT for Bmax and 3×108m/s for c in (IV) to find Emax.

    Emax=(3.0×108m/s)(48.0μT×109T1μT)=1.44×104V/m

Substitute 1.44×104V/m for Emax, 1.01×107m1 for k, and 3.01×1015rad/s for ω in the (V) equation to find EZ

    EZ=(1.44×104V/m)sin[(1.01×107m1)z(3.02×1015rad/s)t]

Substitute 48.0μT for Bmax, 1.01×107m1 for k, and 3.01×1015rad/s for ω in(VI) equation to find BZ

    EZ=(1.01×106T)sin[(1.01×107m1)z(3.02×1015rad/s)t]

Therefore, the equation for the electric field is E=(1.44×104V/m)sin[(1.01×107m1)z(3.02×1015rad/s)t] and the equation for the magnetic field is B=(48.0×106T)sin[(1.01×107m1)z(3.02×1015rad/s)t].

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…
Two complex values are  z1=8 + 8i,  z2=15 + 7 i.  z1∗  and  z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗   Please show all steps
An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin⁡(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave.  What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all steps

Chapter 34 Solutions

EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC

Ch. 34 - Prob. 4PQCh. 34 - A solenoid with n turns per unit length has radius...Ch. 34 - Prob. 6PQCh. 34 - Prob. 7PQCh. 34 - Prob. 8PQCh. 34 - Prob. 9PQCh. 34 - Prob. 10PQCh. 34 - Prob. 11PQCh. 34 - Prob. 12PQCh. 34 - Prob. 13PQCh. 34 - Prob. 14PQCh. 34 - Prob. 15PQCh. 34 - Prob. 16PQCh. 34 - Prob. 17PQCh. 34 - Prob. 18PQCh. 34 - Prob. 19PQCh. 34 - Prob. 20PQCh. 34 - Ultraviolet (UV) radiation is a part of the...Ch. 34 - Prob. 22PQCh. 34 - What is the frequency of the blue-violet light of...Ch. 34 - Prob. 24PQCh. 34 - Prob. 25PQCh. 34 - Prob. 26PQCh. 34 - WGVU-AM is a radio station that serves the Grand...Ch. 34 - Suppose the magnetic field of an electromagnetic...Ch. 34 - Prob. 29PQCh. 34 - Prob. 30PQCh. 34 - Prob. 31PQCh. 34 - Prob. 32PQCh. 34 - Prob. 33PQCh. 34 - Prob. 34PQCh. 34 - Prob. 35PQCh. 34 - Prob. 36PQCh. 34 - Prob. 37PQCh. 34 - Prob. 38PQCh. 34 - Prob. 39PQCh. 34 - Prob. 40PQCh. 34 - Prob. 41PQCh. 34 - Prob. 42PQCh. 34 - Prob. 43PQCh. 34 - Prob. 44PQCh. 34 - Prob. 45PQCh. 34 - Prob. 46PQCh. 34 - Prob. 47PQCh. 34 - Prob. 48PQCh. 34 - Prob. 49PQCh. 34 - Prob. 50PQCh. 34 - Prob. 51PQCh. 34 - Prob. 52PQCh. 34 - Optical tweezers use light from a laser to move...Ch. 34 - Prob. 54PQCh. 34 - Prob. 55PQCh. 34 - Prob. 57PQCh. 34 - Prob. 58PQCh. 34 - Prob. 59PQCh. 34 - Prob. 60PQCh. 34 - Some unpolarized light has an intensity of 1365...Ch. 34 - Prob. 62PQCh. 34 - Prob. 63PQCh. 34 - Prob. 64PQCh. 34 - Unpolarized light passes through three polarizing...Ch. 34 - The average EarthSun distance is 1.00 astronomical...Ch. 34 - Prob. 67PQCh. 34 - Prob. 68PQCh. 34 - Prob. 69PQCh. 34 - Prob. 70PQCh. 34 - Prob. 71PQCh. 34 - Prob. 72PQCh. 34 - Prob. 73PQCh. 34 - Prob. 74PQCh. 34 - CASE STUDY In Example 34.6 (page 1111), we...Ch. 34 - Prob. 76PQCh. 34 - Prob. 77PQCh. 34 - Prob. 78PQCh. 34 - Prob. 79PQCh. 34 - Prob. 80PQCh. 34 - Prob. 81PQCh. 34 - Prob. 82PQCh. 34 - Prob. 83PQCh. 34 - In Section 34-1, we summarized classical...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning