(a)
The direction in which the wave is travelling.
(a)

Answer to Problem 73PQ
The wave is travelling along the positive Z-direction.
Explanation of Solution
Since the given equation of the electric field of the wave contains the position variable ‘z’, therefore. The wave travels in the positive Z-direction.
Conclusion:
Therefore, the wave is travelling along the positive Z-direction.
(b)
The frequency, angular frequency and wave number of the wave.
(b)

Answer to Problem 73PQ
The frequency of the wave is
Explanation of Solution
Write the expression for the frequency of an
Here
Write the expression for the angular frequency of the wave.
Here,
Write the expression for the wave number of the wave.
Here,
Conclusion:
Substitute
Substitute equation (II) in the above equation to find
Substitute
Therefore, the frequency of the wave is
(c)
The direction in which the magnetic field of the wave oscillates.
(c)

Answer to Problem 73PQ
The magnetic field of the wave oscillates in the negative X-direction.
Explanation of Solution
Since, the wave is travelling along the Z direction, and the electric field oscillates along the Y-direction. Therefore, the magnetic field oscillates along the X-direction.
Conclusion:
Therefore, the magnetic field of the wave oscillates in the negative X-direction.
(d)
The equation of the magnetic field of the wave.
(d)

Answer to Problem 73PQ
The equation of the magnetic field of the wave is
Explanation of Solution
Write the expression for the maximum magnetic field.
Here,
Write the equation for the magnetic field.
Conclusion:
Substitute
Substitute
Therefore, the equation for the magnetic field is
Want to see more full solutions like this?
Chapter 34 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forward
- Pls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward1. The piston in the figure has a mass of 0.5 kg. The infinitely long cylinder is pushed upward at a constant velocity. The diameters of the cylinder and piston are 10 cm and 9 cm, respectively, and there is oil between them with v = 10⁻⁴ m^2/s and γ = 8,000 N/m³. At what speed must the cylinder ascend for the piston to remain at rest?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





