69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f , (c) the object distance p , (d) the image distance i , and (e) the lateral magnification m . (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O , and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign. Table 34-8 Problem 69 through 79: More Lenses. See the setup for these problems. (a) Type (b) f (c) p (d) i (e) m (f) R/V (g) I/NI (h) Side 69 +10 +5.0 70 20 +8.0 <1.0 NI 71 +16 +0.25 72 +16 –0.25 73 +10 –0.50 74 C 10 +20 75 10 +5.0 <1.0 Same 76 10 +5.0 >1.0 77 +16 +1.25 78 +10 0.50 NI 79 20 +8.0 >1.0
69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f , (c) the object distance p , (d) the image distance i , and (e) the lateral magnification m . (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O , and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign. Table 34-8 Problem 69 through 79: More Lenses. See the setup for these problems. (a) Type (b) f (c) p (d) i (e) m (f) R/V (g) I/NI (h) Side 69 +10 +5.0 70 20 +8.0 <1.0 NI 71 +16 +0.25 72 +16 –0.25 73 +10 –0.50 74 C 10 +20 75 10 +5.0 <1.0 Same 76 10 +5.0 >1.0 77 +16 +1.25 78 +10 0.50 NI 79 20 +8.0 >1.0
69 through 79 GO 76, 78 SSM 75, 77 More lenses. Object O stands on the central axis of a thin symmetric lens. For this situation, each problem in Table 34-8 refer to (a) the lens type, converging (C) or diverging (D), (b) the focal distance f, (c) the object distance p, (d) the image distance i, and (e) the lateral magnification m. (All distances are in centimeters.) It also refers to whether (f) the image is real (R) or virtual (V), (g) inverted (I) or noninverted (NI) from O, and (h) on the same side of the lens as O or on the opposite side. Fill in the missing information, including the value of m when only an inequality is given. Where only a sign is missing, answer with the sign.
Table 34-8Problem 69 through 79: More Lenses. See the setup for these problems.
2
C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO
Bendemeer Secondary School
Secondary Three Express Physics
Chpt 1: Physical Quantities, Unit and Measurements Assignment
Name: Chen ShiMan
loov neowled soria
25
( 03 ) Class: 3 Respect 6 Date: 2025.01.22
1
Which group consists only of scalar quantities?
ABCD
A
acceleration, moment and energy store
distance, temperature and time
length, velocity and current
mass, force and speed
B
D.
B
Which diagram represents the resultant vector of P and Q? lehtele
시
bas siqpeq olarist of beau eldeo qirie-of-qi
P
A
C
-B
qadmis
rle mengaib priwollot erT S
Quilons of qira ono mont aboog
eed indicator
yh from West
eril to Inioqbim srij
enisinoo MA
(6)
08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld
260 km/h
D
1
D.
e
51
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.