Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 59P
To determine
The minimum energy of the electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Scanning and tunneling electron microscopes are used to measure high resolution scientific images. As a general rule, the wavelength of the electrons must be at least as small as the item being scanned
in order to detect/image the presence of the item. The new novel coronavirus has a size of 60 nm to 140 nm. The crowns or "corona" which are the protien like structures that extend from the body of the
virus and have a length of 7 nm to 10 nm.
The image above was taken at Rocky Mountain Laboratories in Montana, USA, using a tunneling electron microscope (TEM). What approximate size of wavelength was used to produce the
image?
160 nm
O 80 nm
O 20 nm
O 5 nm
оооо
A principle of resolution of objects is that the position can only be determined to an accuracy approximately the same as the wavelength being used. What is the resulting uncertainty in an electron velocity if we attempt to use optical radiation with λ = 500 nm to determine its position?
If an electron’s position can be measured to a precisionof 2.4 x 10-8 m how precisely can its speed be known?
Chapter 34 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - Prob. 9PCh. 34 - Prob. 10P
Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Prob. 26PCh. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the ground state energy (in eV) of a proton confined to a one-dimensional box the size of the uranium nucleus that has a radius of approximately 15.0 fm?arrow_forwardThe resolving power of a microscope depends on the wavelength used. If you wanted to “see” an atom, a wavelength of approximately 1.00 × 10-11 m would be required. (a) If electrons are used (in an electron microscope), what minimum kinetic energy is required for the electrons? (b) What If? If photons are used, what minimum photon energy is needed to obtain the required resolution?arrow_forwardWhat double-slit separation would produce a first-order maximum at 3.00° for 25.0-keV x rays? The small answer indicates that the wave character of x rays is best determined by having them interact with very smallobjects such as atoms and molecules.arrow_forward
- What are the three longest wavelengths of the de Broglie waves that describe an electron that is confined in an infi- nite well of width 0.144 nm?arrow_forwardIn an electron-scattering experiment, an intense reflected beam is found at ϕ = 32° for a crystal with an interatomic distance of 0.23 nm. What is the lattice spacing of the planes responsible for the scattering? Assuming fi rst-order diffraction, what are the wavelength, momentum, kinetic energy, and total energy of the incident electrons?arrow_forwardsimple cubic crystal is cut so that the rows of atoms on its surface are separated by adistance of 0.352 nm. A beam of electrons is accelerated through a potential difference of 175 Vand is incident on the surface. If all diffraction orders are possible, at what angles, relative to thecrystal surface, would the diffracted beams be observed? me = 9.11 ×10 -31 kg.arrow_forward
- A single beam of electrons shines on a single slit of width 3.3nm. A diffraction pattern (of electrons!) is formed on a screen that is 2.1m away from the slit. The distance between the central bright spot and the first minimum is 2.1cm.What is the speed (m/s) of the electrons?Make use of the small angle approximation.arrow_forwardA horizontal beam of laser light of wavelength is 585 nm passes through a narrow slit that has width 0.0602mm. The intensity of the light is measured on a vertical screen that is 2.00 m from the slit. (a) What is the minimum uncertainty in the vertical component of the momentum of each proton in the bean after the photon has passed through thr slit? What is the width of the central maximum and the intensity in terms of I0 at the first minimum? (b) If these photons scatters off an electron at rest at an angle of 15 degrees, what is the photon's final energy? (c) If these photons strike a metal surface with work function 2.2eV, what would be the maximum kinetic energy of the emitted electrons?arrow_forwardAn electron microscope uses magnets to accelerate electrons with negligible initial speed through apotential difference of 50 million volts. Calculate the ratio of the resolution of this electron microscope to theresolution of a microscope that uses visible light with a wavelength of 5.00 × 10−7 m through a circularaperture with an aperture of 5.00 mm.arrow_forward
- A single beam of electrons shines on a single slit of width 8.7nm. A diffraction pattern (of electrons!) is formed on a screen that is 3.9m away from the slit. The distance between the central bright spot and the first minimum is 5.7cm.What is the kinetic energy (keV, i.e. kilo electron-Volts) of the electrons?Make use of the small angle approximation.arrow_forwardA beam of neutrons that all have the same energy scatters from atoms that have a spacing of 0.0910 nm in the surface plane of a crystal. The m = 1 intensity maximum occurs when the angle u in Fig. is 28.6°. What is the kinetic energy (in electron volts) of each neutron in the beam?arrow_forwardA beam of 40 eV electrons traveling in the+x-directionpasses through a slit that is parallel to the y-axis and5.0 mm wide. The diffraction pattern is recorded on a screen 2.5 mfrom the slit. (a) What is the de Broglie wavelength of the electrons?(b) How much time does it take the electrons to travel from the slit tothe screen? (c) Use the width of the central diffraction pattern to calculatethe uncertainty in the y-component of momentum of an electronjust after it has passed through the slit. (d) Use the result of part(c) and the Heisenberg uncertainty principle [(Eq. 39.29) for y] toestimate the minimum uncertainty in the y-coordinate of an electronjust after it has passed through the slit. Compare your result to thewidth of the slit.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax