Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 34, Problem 12P
(a)
To determine
The plot for
(b)
To determine
The value of the plank’s constant.
(c)
To determine
The comparison for the derived value of the plank’s constant with the accepted value of the plank’s constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In a particular photoelectric experiment, a stopping potential of 2.1 V is measured when
ultraviolet light with a wavelength of 290 nm is incident on a metal. Given the light of speed
c = 3.0 x 108 m/s and Planck constant h = 6.625 x 10-34 J. s or 4.14 × 10-15 eV.s
%3D
(a) Describe and illustrate the photoelectric experiment and explain why it cannot be
explained by classical physics.
(b) Using the same setup and metal, determine the stopping potential if blue light with a
wavelength of 440 nm is used, instead of the ultraviolet light.
(c) Using the same setup and metal, describe what happened if a red light with a wavelength
of 620 nm is used, instead of the ultraviolet light.
A sodium vapor lamp is placed at the center of a large sphere that
absorbs all the light reaching it. The rate at which the lamp emits energy
is 40 W; assume that the emission is entirely at a wavelength of 190 nm.
Evaluate the rate at which the photon is absorbed by the lamp.
Take,
Planck Constant h = 6.63 x 10-34 J.S
Speed of light c = 3.00 x 10 m/s
Light of wavelength 350 nm falls on a potas-
sium surface, and the photoelectrons have a
maximum kinetic energy of 1.3 eV.
What is the work function of potassium?
The speed of light is 3 × 10° m/s and Planck's
J.s.
-34
constant is 6.63 × 10°
Answer in units of eV.
What is the threshold frequency for potas-
sium?
Answer in units of Hz.
Chapter 34 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 34 - Prob. 1PCh. 34 - Prob. 2PCh. 34 - Prob. 3PCh. 34 - Prob. 4PCh. 34 - Prob. 5PCh. 34 - Prob. 6PCh. 34 - Prob. 7PCh. 34 - Prob. 8PCh. 34 - Prob. 9PCh. 34 - Prob. 10P
Ch. 34 - Prob. 11PCh. 34 - Prob. 12PCh. 34 - Prob. 13PCh. 34 - Prob. 14PCh. 34 - Prob. 15PCh. 34 - Prob. 16PCh. 34 - Prob. 17PCh. 34 - Prob. 18PCh. 34 - Prob. 19PCh. 34 - Prob. 20PCh. 34 - Prob. 21PCh. 34 - Prob. 22PCh. 34 - Prob. 23PCh. 34 - Prob. 24PCh. 34 - Prob. 25PCh. 34 - Prob. 26PCh. 34 - Prob. 27PCh. 34 - Prob. 28PCh. 34 - Prob. 29PCh. 34 - Prob. 30PCh. 34 - Prob. 31PCh. 34 - Prob. 32PCh. 34 - Prob. 33PCh. 34 - Prob. 34PCh. 34 - Prob. 35PCh. 34 - Prob. 36PCh. 34 - Prob. 37PCh. 34 - Prob. 38PCh. 34 - Prob. 39PCh. 34 - Prob. 40PCh. 34 - Prob. 41PCh. 34 - Prob. 42PCh. 34 - Prob. 43PCh. 34 - Prob. 44PCh. 34 - Prob. 45PCh. 34 - Prob. 46PCh. 34 - Prob. 47PCh. 34 - Prob. 48PCh. 34 - Prob. 49PCh. 34 - Prob. 50PCh. 34 - Prob. 51PCh. 34 - Prob. 52PCh. 34 - Prob. 53PCh. 34 - Prob. 54PCh. 34 - Prob. 55PCh. 34 - Prob. 56PCh. 34 - Prob. 57PCh. 34 - Prob. 58PCh. 34 - Prob. 59PCh. 34 - Prob. 60PCh. 34 - Prob. 61PCh. 34 - Prob. 62PCh. 34 - Prob. 63PCh. 34 - Prob. 64PCh. 34 - Prob. 65PCh. 34 - Prob. 66PCh. 34 - Prob. 67PCh. 34 - Prob. 68PCh. 34 - Prob. 69PCh. 34 - Prob. 70PCh. 34 - Prob. 71PCh. 34 - Prob. 72PCh. 34 - Prob. 73P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that Stefan’s law results from Planck’s radiation law. Hin: To compute the total power of blackbody radiation emitted across the entire spectrum of wavelengths at a given temperature, integrate Planck’s law over the entire spectrum P(T)=0I(,T)d. Use the substitution x=hckT and the tabulated value of the integral 0dx x 3( e x 1)=415arrow_forwardA 600-nm light falls on a photoelectric surface and electrons with the maximum kinetic energy of 0.17 eV are emitted. Determine (a) the work function and (b) the cutoff frequency of the surface. (c) What is the stopping potential when the surface is illuminated with light of wavelength 400 nm?arrow_forwardSuppose that in the photoelectric-effect experiment we make a plot of the detected current versus the applied potential difference. What information do we obtain from such a plot? Can we determine from it the value of Planck’s constant? Can we determine the work function of the metal?arrow_forward
- A 900-W microwave generator in an oven generates energy quanta of frequency 2560 MHz. (a) How many energy quanta does it emit per second? (b) How many energy quanta must be absorbed by a pasta dish placed in the radiation cavity to increase its temperature by 45.0 K? Assume that the dish has a mass of 0.5 kg and that its specific heat is 0.9 kcal/kg • K. (c) Assume that all energy quanta emitted by the generator are absorbed by the pasta dish. How long must we wait until the dish in (b) is ready?arrow_forwardEstimate the binding energy of electrons in magnesium, given that the wavelength of 337 nm is the longest wavelength that a photon may have to eject a photoelectron from magnesium photoelectrode.arrow_forward(a) Calculate the momentum of a photon having a wavelength of 2.50 m. (b) Find the velocity of an electron having the same momentum. (c) What is the kinetic energy of the electron, and how does it compare with that of the photon?arrow_forward
- (a) What is the momentum of a 0.0100-nm-wavelength photon that could detect details of an atom? (b) What is its energy in MeV?arrow_forwardWhen you talk about FM radio stations and talk about the frequency it emits at, you are talking about the frequency of the electromagnetic wave that leaves the station. Traditionally radio stations are measured in MHz, where 1MHz = 106 Hz. If a FM radio station is at 93.8 MHz, what is the energy in Joules of the photon associated with this radio wave? Planck's Constant is 6.63 x 10-34 J*sarrow_forwardIn a photoelectric experiment using a Potasium surface, you find a stopping potential of 0.57 V for a wavelength of 434 nm and a stopping potential of 2.30 V for a wavelength of 271 nm. Because this is an experiment, your value of Planck's constant will be slightly different from the official value. From these data find a) a value for Planck's constant h 8.81 x10-34 J . s b) the work function for Potasium 2.29 eV c) the cutoff wavelength for this metal 541.5 птarrow_forward
- When light with a frequency f1 = 547.5 THz illuminates a metal surface, the most energetic photoelectrons have 1.260 x 10^-19 J of kinetic energy. When light with a frequency f2 = 738.8 THz is used instead, the most energetic photoelectrons have 2.480 x 10^-19 J of kinetic energy. Using these experimental results , determine the approximate value of Planck's constant.arrow_forwardSolar radiation falls on Earth's surface at a rate of 1900 W/m². Assuming that the radiation has an average wavelength of 580 nm, how many photons per square meter per second fall on the surfaces? The speed of light is 3 × 10° m/s and Planck's constant is 6.62607 × 10-34 J. s. Answer in units of photon/m² · s. 2arrow_forwardQ-30: Blue light with a wavelength of 460.0 nm is incident on a piece of rubidium. The work function of rubidium is 2.16 e V. What is the maximum kinetic energy of the ejected photoelectrons? (h = 6.63 x 10-34 J x sec c = 3x 108 m/s; 1 e V = 1.60 x10-19 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax