Concept explainers
A large, flat sheet carries a uniformly distributed
the sheet radiates an
(a) Find the wave function for the electric field of the wave to the right of the sheet. (b) Find the Poynting vector as a function of x and t. (c) Find the intensity of the wave. (d) What If? If the sheet is to emit
Figure P33.28
(a)
The wave function for the electric field of the wave to the right of the sheet.
Answer to Problem 46P
The wave function for the electric field of the wave to the right of the sheet is
Explanation of Solution
Given info: The wave function for the magnetic field of the wave to the right of the sheet is
Write the Maxwell’s third equation,
Here,
Substitute
Integrating the above equation with respect to
Substitute
The direction of electric field must be perpendicular to the direction of propagation
Conclusion:
Therefore, the wave function for the electric field of the wave to the right of the sheet is
(b)
The Poynting vector as a function of
Answer to Problem 46P
The Poynting vector as a function of
Explanation of Solution
Given info: The wave function for the magnetic field of the wave to the right of the sheet is
Write the formula to calculate the Poynting vector.
Here,
Substitute
Conclusion:
Therefore, the Poynting vector as a function of
(c)
The intensity of the wave.
Answer to Problem 46P
The intensity of the wave is
Explanation of Solution
Given info: The wave function for the magnetic field of the wave to the right of the sheet is
The wave function for the magnetic field of the wave is.
The maximum value of
The wave function for the electric field of the wave is.
The maximum value of
Write the formula to calculate the intensity of the wave is,
Here,
Substitute
Conclusion:
Therefore, the intensity of the wave is
(d)
The maximum value of sinusoidal current density.
Answer to Problem 46P
The maximum value of sinusoidal current density is
Explanation of Solution
Given info: The intensity of the wave is
The intensity of the wave from part (c) is,
Here,
Rearrange the above expression for
Substitute
Conclusion:
Therefore, the maximum value of sinusoidal current density is
Want to see more full solutions like this?
Chapter 34 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
- Good explanation it sure experts solve it.arrow_forwardNo chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forward
- No chatgpt pls will upvotearrow_forwardCorrect answer No chatgpt pls will upvotearrow_forwardStatistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forward
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- No chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill