A woman borrows $6,000 at 9 % compounded monthly, which is to be amortized over 3 years in equal monthly payments. For tax purposes, she needs to know the amount of interest paid during each year of the loan. Find the interest paid during the first year, the second year, and the third year of the loan. [Hint: Find the unpaid balance after 12 payments and after 24 payments.]
A woman borrows $6,000 at 9 % compounded monthly, which is to be amortized over 3 years in equal monthly payments. For tax purposes, she needs to know the amount of interest paid during each year of the loan. Find the interest paid during the first year, the second year, and the third year of the loan. [Hint: Find the unpaid balance after 12 payments and after 24 payments.]
Solution Summary: The author calculates the amount of interest paid during the first year, the second year and the third year of the loan of 6000.
A woman borrows
$6,000
at
9
%
compounded monthly, which is to be amortized over
3
years in equal monthly payments. For tax purposes, she needs to know the amount of interest paid during each year of the loan. Find the interest paid during the first year, the second year, and the third year of the loan. [Hint: Find the unpaid balance after
12
payments and after
24
payments.]
= 1. Show
(a) Let G = Z/nZ be a cyclic group, so G = {1, 9, 92,...,g" } with g":
that the group algebra KG has a presentation KG = K(X)/(X” — 1).
(b) Let A = K[X] be the algebra of polynomials in X. Let V be the A-module
with vector space K2 and where the action of X is given by the matrix
Compute End(V) in the cases
(i) x = p,
(ii) xμl.
(67) ·
(c) If M and N are submodules of a module L, prove that there is an isomorphism
M/MON (M+N)/N.
(The Second Isomorphism Theorem for modules.)
You may assume that MON is a submodule of M, M + N is a submodule of L
and the First Isomorphism Theorem for modules.
(a) Define the notion of an ideal I in an algebra A. Define the product on the quotient
algebra A/I, and show that it is well-defined.
(b) If I is an ideal in A and S is a subalgebra of A, show that S + I is a subalgebra
of A and that SnI is an ideal in S.
(c) Let A be the subset of M3 (K) given by matrices of the form
a b
0 a 0
00 d
Show that A is a subalgebra of M3(K).
Ꮖ
Compute the ideal I of A generated by the element and show that A/I K as
algebras, where
0 1 0
x =
0 0 0
001
(a) Let HI be the algebra of quaternions. Write out the multiplication table for 1, i, j,
k. Define the notion of a pure quaternion, and the absolute value of a quaternion.
Show that if p is a pure quaternion, then p² = -|p|².
(b) Define the notion of an (associative) algebra.
(c) Let A be a vector space with basis 1, a, b. Which (if any) of the following rules
turn A into an algebra? (You may assume that 1 is a unit.)
(i) a² = a, b²=ab = ba 0.
(ii) a²
(iii) a²
=
b, b² = abba = 0.
=
b, b²
=
b, ab = ba = 0.
(d) Let u1, 2 and 3 be in the Temperley-Lieb algebra TL4(8).
ገ
12
13
Compute (u3+ Augu2)² where A EK and hence find a non-zero x € TL4 (8) such
that ² = 0.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY