Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
Question
Book Icon
Chapter 34, Problem 41P

(a)

To determine

The energy of the ground state (n=1) and the first two excited states of a neutron in a one-dimensional box and the energy level diagram of the system.

(a)

Expert Solution
Check Mark

Answer to Problem 41P

The energy of the ground state (n=1) is 204.53MeV and the first two excited states of a neutron in a one-dimensional box are 818 MeV and 1.84 GeV . The energy level diagram of the system is shown in Figure 1.

Explanation of Solution

Given:

The length of one-dimensional box is 1.00fm (aboutthediameterofanatomicnucleus) .

Formula used:

The expression for energy of ground state is given by,

  E1=h28mnL2

The expression for energy of nth states is given by,

  En=n2E1

Calculation:

The energy of ground stateis calculated as,

  E1=h28mnL2= ( 6.626× 10 34 Js )28( 1.6749× 10 27 kg) ( 1× 10 15 m )2( 1.602× 10 19 J)=204.53×106eV

Solve further as,

  E1=204.53×106eV=(204.53× 106eV)×( 10 6 MeV)( 1eV)=204.53MeV

The energy of first excited state is calculated as,

  En=n2E1E2=22×204.53MeV=818MeV

The energy of second excited state is calculated as,

  En=n2E1E3=32×204.53MeV=1840MeV

Solve further as,

  E3=1840MeV=(1840MeV)×( 10 3 GeV)( 1MeV)=1.84GeV

The energy level diagram of the system is shown in Figure 1.

  Physics for Scientists and Engineers, Chapter 34, Problem 41P

Figure 1

Conclusion:

Therefore, the energy of the ground state (n=1) is 204.53MeV and the first two excited states of a neutron in a one-dimensional box are 818 MeV and 1.84 GeV . The energy level diagram of the system is shown in Figure 1.

(b)

To determine

The wavelength of electromagnetic radiation emitted.

(b)

Expert Solution
Check Mark

Answer to Problem 41P

The wavelength of electromagnetic radiation emittedis 2.02fm .

Explanation of Solution

Given:

The neutron makes transition from n=2 to n=1 .

Formula used:

The expression for wavelength of electromagnetic radiation emitted is given by,

  λ=1240eVnmΔE

Calculation:

The wavelength of electromagnetic radiation emitted is calculated as,

  λ=1240eVnmΔE=1240eVnmE2E1=1240eVnm4E1E1=1240eVnm3×204.53MeV

Solve further as,

  λ=1240eVnm3×204.53MeV=1240eVnm3×( ( 204.53MeV )× ( 10 6 eV ) ( 1MeV ) )=(( 2.02× 10 6 nm)× ( 10 9 fm ) ( 1nm ))=2.02fm

Conclusion:

Therefore, the wavelength of electromagnetic radiation emitted is 2.02fm .

(c)

To determine

The wavelength of electromagnetic radiation emitted.

(c)

Expert Solution
Check Mark

Answer to Problem 41P

The wavelength of electromagnetic radiation emitted is 1.21fm .

Explanation of Solution

Given:

The neutron makes transition from n=3 and n=2 .

Formula used:

The expression for wavelength of electromagnetic radiation emitted is given by,

  λ=1240eVnmΔE

Calculation:

The wavelength of electromagnetic radiation emitted is calculated as,

  λ=1240eVnmΔE=1240eVnmE3E2=1240eVnm9E14E1=1240eVnm5×204.53MeV

Solve further as,

  λ=1240eVnm5×204.53MeV=1240eVnm5×( ( 204.53MeV )× ( 10 6 eV ) ( 1MeV ) )=(( 1.21× 10 6 nm)× ( 10 9 fm ) ( 1nm ))=1.21fm

Conclusion:

Therefore, the wavelength of electromagnetic radiation emitted is 1.21fm .

(d)

To determine

The wavelength of electromagnetic radiation emitted.

(d)

Expert Solution
Check Mark

Answer to Problem 41P

The wavelength of electromagnetic radiation emitted is 0.758fm .

Explanation of Solution

Given:

The neutron makes transition from n=3 to n=1 .

Formula used:

The expression for wavelength of electromagnetic radiation emitted is given by,

  λ=1240eVnmΔE

Calculation:

The wavelength of electromagnetic radiation emitted is calculated as,

  λ=1240eVnmΔE=1240eVnmE3E1=1240eVnm9E1E1=1240eVnm8×204.53MeV

Solve further as,

  λ=1240eVnm3×204.53MeV=1240eVnm8×( ( 204.53MeV )× ( 10 6 eV ) ( 1MeV ) )=(( 0.758× 10 6 nm)× ( 10 9 fm ) ( 1nm ))=0.758fm

Conclusion:

Therefore, the wavelength of electromagnetic radiation emitted is 0.758fm .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(1) For the helium-neon laser, estimate the Doppler broadening of the output wavelength 632.8 nm at T= 293 K. (2) Estimate the broadening of the same wavelength due to the Heisenberg uncertainty principle, assuming that the metastable state has a lifetime of about 1 ms.
(a) What is the separation in energy between the lowest two energy levels for a container 20 cm on a side containing argon atoms? Assume, for simplicity, that the argon atoms are trapped in a one-dimensional well 20 cm wide. The molar mass of argon is 39.9 g/mol. (b) At 300 K, to the nearest power of ten, what is the ratio of the thermal energy of the atoms to this energy separation? (c) At what temperature does the thermal energy equal the energy separation?
(a) An electron and a 0.0400 kg bullet each have a velocity of magnitude 510 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? (Give the lower limit for the electron in mm and that for the bullet in m.) for the electron 0.01136 for the bullet 2.585e-34 mm m (b) What If? Within what lower limit could we determine the position of each object along the direction of the velocity if the electron and the bullet were both relativistic, traveling at 0.450c measured with the same accuracy? (Give the lower limit for the electron in nm and that for the bullet in m.) for the electron for the bullet 4.2899 X nm 9.76445e-42 X m
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning