EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100654428
Author: Jewett
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
100%
Book Icon
Chapter 34, Problem 34.6P

(a)

To determine

The electric field the rod creates at the point (x=0,y=20.0cm,z=0) .

(a)

Expert Solution
Check Mark

Answer to Problem 34.6P

The electric field the rod creates at the point (x=0,y=20.0cm,z=0) is (3.148j^)kV/m .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The value of permittivity of free space is 8.85×1012F/m .

The figure given below shows the location of the thin rod with respect to axis.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 34, Problem 34.6P

Figure (1)

The formula for the electric field due to long wire is,

E=λrε0

Here,

ε0 is the permittivity of free space.

λ is the linear density of the electric charge.

r is the distance of the electric field from the origin at y axis.

Substitute 35.0nC/m for λ , 8.85×1012F/m for ε0 and 20.0cm for r in above equation to find E .

E=35.0nC(109C1nC)/m(20.0cm)(102m1cm)(8.85×1012F/m)=(3.148j^)kV/m

Conclusion:

Therefore, the electric field the rod creates at the point (x=0,y=20.0cm,z=0) is (3.148j^)kV/m .

(b)

To determine

The magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) .

(b)

Expert Solution
Check Mark

Answer to Problem 34.6P

The magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) is (5.25×107k^)T .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The value of the permeability constant is ×107Tm/A

The expression for the current in the wire is,

I=λv

Here,

v is the speed.

Substitute 35.0nC/m for λ and 1.50×107m/s for v in above equation to find I .

I=(35.0nC(109C1nC)/m)(1.50×107m/s)=0.525A

Thus, the current in the wire is 0.525A .

The formula for the magnetic flux due to wire is,

B=(μ0I2πr)

Here,

μ0 is the permeability constant.

Substitute 20.0cm for r , ×107Tm/A for μ0 and 0.525A for I in above equation to find B .

B=((0.525A)(×107H/m)2π(20.0cm(102m1cm)))=(5.25×107k^)T

Conclusion:

Therefore, the magnetic field the rod creates at the point (x=0,y=20.0cm,z=0) is (5.25×107k^)T .

(c)

To determine

The force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s .

(c)

Expert Solution
Check Mark

Answer to Problem 34.6P

The force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s is 4.83×1016(j^)N .

Explanation of Solution

Given info: The linear density of the rod is 35.0nC/m and the speed is 1.50×107m/s .

The charge on an electron is 1.60×1019C

The Lorentz force on the electron is,

F=qE+qv×B

Here,

q is the charge on an electron.

Substitute 1.60×1019C for q , (3.148×103j^)V/m for E , (2.40×108)i^m/s for v and (5.25×107k^)T for B in above equation to find F .

F=[(1.60×1019C)((3.148×103j^)V/m)+(1.60×1019C)((2.40×108)i^m/s)×((5.25×107k^)T)]=5.04×1016(j^)N+2.06×1017(j^)N=4.83×1016(j^)N

Conclusion:

Therefore, the force exerted on an electron at point (x=0,y=20.0cm,z=0) , moving with velocity (2.40×108)i^m/s is 4.83×1016(j^)N .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cm
No chatgpt pls will upvote
13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…

Chapter 34 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill