University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
14th Edition
ISBN: 9780321982582
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 34.55E
BIO If the person in Exercise 34.54 chooses ordinary glasses over contact lenses, what power lens (in diopters) does she need to correct her vision if the lenses are 2.0 cm in front of the eye?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 34 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Ch. 34.1 - If you walk directly toward a plane mirror at a...Ch. 34.2 - A cosmetics mirror is designed so that your...Ch. 34.3 - The water droplets in Fig. 34.23 have radius of...Ch. 34.4 - Prob. 34.4TYUCh. 34.5 - When used with 35-mm film (image area 24 mm 36...Ch. 34.6 - A certain eyeglass lens is thin at its center,...Ch. 34.7 - You are using a magnifier to examine a gem. If you...Ch. 34.8 - Which gives a lateral magnification of greater...Ch. 34 - A spherical mirror is cut in half horizontally....Ch. 34 - For the situation shown in Fig. 34.3, is the image...
Ch. 34 - The laws of optics also apply to electromagnetic...Ch. 34 - Explain why the focal length of a plane mirror is...Ch. 34 - If a spherical mirror is immersed in water, does...Ch. 34 - For what range of object positions does a concave...Ch. 34 - When a room has mirrors on two opposite walls, an...Ch. 34 - For a spherical mirror, if s = f, then s = , and...Ch. 34 - You may have noticed a small convex mirror next to...Ch. 34 - A student claims that she can start a fire on a...Ch. 34 - A person looks at his reflection in the concave...Ch. 34 - In Example 34.4 (Section 34.2), there appears to...Ch. 34 - Prob. 34.13DQCh. 34 - The bottom of the passenger-side mirror on your...Ch. 34 - How could you very quickly make an approximate...Ch. 34 - The focal length of a simple lens depends on the...Ch. 34 - When a converging lens is immersed in water, does...Ch. 34 - A spherical air bubble in water can function as a...Ch. 34 - Can an image formed by one reflecting or...Ch. 34 - If a piece of photographic film is placed at the...Ch. 34 - According to the discussion in Section 34.2, light...Ch. 34 - Youve entered a survival contest that will include...Ch. 34 - BIO You cant see clearly underwater with the naked...Ch. 34 - Prob. 34.24DQCh. 34 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 34 - The image of a tree just covers the length of a...Ch. 34 - A pencil that is 9.0 cm long is held perpendicular...Ch. 34 - A concave mirror has a radius of curvature of 34.0...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - The diameter of Mars is 6794 km, and its minimum...Ch. 34 - An object is 18.0 cm from the center of a...Ch. 34 - Prob. 34.9ECh. 34 - You hold a spherical salad bowl 60 cm in front of...Ch. 34 - A spherical, concave shaving mirror has a radius...Ch. 34 - For a concave spherical mirror that has focal...Ch. 34 - Dental Mirror. A dentist uses a curved mirror to...Ch. 34 - For a convex spherical mirror that has focal...Ch. 34 - The thin glass shell shown in Fig. E34.15 has a...Ch. 34 - A tank whose bottom is a minor is filled with...Ch. 34 - A speck of dirt is embedded 3.50 cm below the...Ch. 34 - A transparent liquid fills a cylindrical tank to a...Ch. 34 - A person swimming 0.80 m below the surface of the...Ch. 34 - A person is lying on a diving board 3.00 m above...Ch. 34 - A Spherical Fish Bowl. A small tropical fish is at...Ch. 34 - The left end of a long glass rod 6.00 cm in...Ch. 34 - Prob. 34.23ECh. 34 - Prob. 34.24ECh. 34 - Repeat Exercise 34.24 for the case in which the...Ch. 34 - Prob. 34.26ECh. 34 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 34 - A lens forms an image of an object. The object is...Ch. 34 - A converging meniscus lens (see Fig. 34.32a) with...Ch. 34 - A converging lens with a focal length of 70.0 cm...Ch. 34 - A converging lens forms an image of an...Ch. 34 - A photographic slide is to the left of a lens. The...Ch. 34 - A double-convex thin lens has surfaces with equal...Ch. 34 - A converging lens with a focal length of 9.00 cm...Ch. 34 - BIO The Cornea As a Simple Lens. The cornea...Ch. 34 - A lensmaker wants to make a magnifying glass from...Ch. 34 - For each thin lens shown in Fig. E34.37, calculate...Ch. 34 - A converging lens with a focal length of 12.0 cm...Ch. 34 - Repeat Exercise 34.38 for the case in which the...Ch. 34 - An object is 16.0 cm to the left of a lens. The...Ch. 34 - Combination of Lenses I. A 1.20-cm-tall object is...Ch. 34 - Combination of Lenses II. Repeat Exercise 34.41...Ch. 34 - Combination of Lenses III. Two thin lenses with a...Ch. 34 - BIO The Lens or the Eye. The crystalline lens of...Ch. 34 - A camera lens has a focal length of 200 mm. How...Ch. 34 - You wish to project the image of a slide on a...Ch. 34 - When a camera is focused, the lens is moved away...Ch. 34 - Zoom Lens. Consider the simple model of the zoom...Ch. 34 - A camera lens has a focal length of 180.0 mm and...Ch. 34 - BIO Curvature of the Cornea. In a simplified model...Ch. 34 - BIO (a) Where is the near point of an eye for...Ch. 34 - BIO Contact Lenses. Contact lenses are placed...Ch. 34 - BIO Ordinary Glasses. Ordinary glasses are worn in...Ch. 34 - BIO A person can see clearly up close but cannot...Ch. 34 - BIO If the person in Exercise 34.54 chooses...Ch. 34 - A thin lens with a focal length of 6.00 cm is used...Ch. 34 - The focal length of a simple magnifier is 8.00 cm....Ch. 34 - You want to view through a magnifier an insect...Ch. 34 - The focal length of the eyepiece of a certain...Ch. 34 - Resolution of a Microscope. The image formed by a...Ch. 34 - A telescope is constructed from two lenses with...Ch. 34 - The eyepiece of a refracting telescope (see Fig....Ch. 34 - A reflecting telescope (Fig. E34.63) is to be made...Ch. 34 - What is the size of the smallest vertical plane...Ch. 34 - If you run away from a plane mirror at 3.60 m/s,...Ch. 34 - Where must you place an object in front of a...Ch. 34 - Prob. 34.67PCh. 34 - A light bulb is 3.00 m from a wall. You are to use...Ch. 34 - CP CALC You are in your car driving on a highway...Ch. 34 - A layer of benzene (n = 1.50) that is 4.20 cm deep...Ch. 34 - Rear-View Mirror. A mirror on the passenger side...Ch. 34 - Figure P34.72 shows a small plant near a thin...Ch. 34 - Pinhole Camera. A pinhole camera is just a...Ch. 34 - Prob. 34.74PCh. 34 - Prob. 34.75PCh. 34 - A Glass Rod. Both ends of a glass rod with index...Ch. 34 - (a) You want to use a lens with a focal length of...Ch. 34 - Autocollimation. You place an object alongside a...Ch. 34 - A lens forms a real image that is 214 cm away from...Ch. 34 - Figure P34.80 shows an object and its image formed...Ch. 34 - Figure P34.81 shows an object and its image formed...Ch. 34 - A transparent rod 30.0 cm long is cut flat at one...Ch. 34 - BIO Focus of the Eye. The cornea of the eye has a...Ch. 34 - The radii of curvature of the surfaces of a thin...Ch. 34 - An object to the left of a lens is imaged by the...Ch. 34 - An object is placed 22.0 cm from a screen. (a) At...Ch. 34 - A convex mirror and a concave mirror are placed on...Ch. 34 - A screen is placed a distance d to the right of an...Ch. 34 - As shown in Fig. P34.89, the candle is at the...Ch. 34 - Two Lenses in Contact. (a) Prove that when two...Ch. 34 - When an object is placed at the proper distance to...Ch. 34 - (a) Repeat the derivation of Eq. (34.19) for the...Ch. 34 - A convex spherical mirror with a focal length of...Ch. 34 - BIO What Is the Smallest Thing We Can See? The...Ch. 34 - Three thin lenses, each with a focal length of...Ch. 34 - A camera with a 90-mm-focal-length lens is focused...Ch. 34 - BIO In one form of cataract surgery the persons...Ch. 34 - BIO A Nearsighted Eye. A certain very nearsighted...Ch. 34 - BIO A person with a near point of 85 cm, but...Ch. 34 - The Galilean Telescope. Figure P34.100 is a...Ch. 34 - Focal Length of a Zoom Lens. Figure P34.101 shows...Ch. 34 - DATA In setting up an experiment for a high school...Ch. 34 - DATA It is your first day at work as a summer...Ch. 34 - Prob. 34.104PCh. 34 - CALC (a) For a lens with focal length f, find the...Ch. 34 - An Object at an Angle. A 16.0-cm-long pencil is...Ch. 34 - BIO People with normal vision cannot focus their...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - Given that frogs are nearsighted in air, which...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The focal length of the lens.
Physics (5th Edition)
8. An observer draws the path of a stone thrown into the air, as shown in Figure 3.31. What is wrong with the p...
College Physics (10th Edition)
Power Used by E.T. A modern SETI search using the 300-meter-diameter Arecibo Radio Telescope in Puerto Rico cou...
Life in the Universe (4th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
2.69 CALC The acceleration of a particle is given by ax(t) = ?2.00 m/s2 + (3.00 m/s3)t. (a) Find the initial ve...
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Show that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forwardTwo converging lenses having focal length of f1 = 10.0 cm and f2 = 20.0 cm are placed d = 50.0 cm apart, as shown in Figure P23.44. The final image is to be located between the lenses, at the position x = 31.0 cm indicated. (a) How far to the left of the first lens should the object be positioned? (b) What is the overall magnification of the system? (c) Is the final image uptight or inserted? Figure P23.44arrow_forwardIn Figures CQ36.11a and CQ36.11b, which glasses correct nearsightedness and which correct farsightedness?arrow_forward
- Figure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardThe near point of an eye is 75.0 cm. (a) What should be the power of a corrective lens prescribed to enable the eye to see an object clearly at 25.0 cm? (b) If, using the corrective lens, the person can see an object clearly at 26 0 cm but not at 25.0 cm, by how many diopters did the lens grinder miss the prescription?arrow_forwardA 7.5x binocular produces an angular magnification of 7.50, acting like a telescope. (Mirrors are used to make the image upright.) If the binoculars have objective lenses with a 75.0 cm focal length, what is the focal length of the eyepiece lenses?arrow_forward
- A lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardA particular nearsighted patient cant see objects clearly beyond 15.0 cm from their eye. Determine (a) the lens power required to correct the patients vision and (b) the type of lens required (converging or diverging). Neglect the distance between the eye and the corrective lens.arrow_forwardA converging lens has a focal length of 10.0 cm. Locate the object if a real image is located at a distance from the lens of (a) 20.0 cm and (b) 50.0 cm. What If? Redo the calculations if the images are virtual and located at a distance from the lens of (c) 20.0 cm and (d) 50.0 cm.arrow_forward
- A person sees clearly wearing eyeglasses that have a power of 4.00 diopters when the lenses are 2.00 cm in front of the eyes. (a) What is the focal length of the lens? (b) Is the person nearsighted or farsighted? (c) If the person wants to switch to contact lenses placed directly on the eyes, what lens power should be prescribed?arrow_forwardTwo thin lenses of focal lengths f1 = 15.0 and f2 = 10.0 cm, respectively, are separated by 35.0 cm along a common axis. The f1 lens is located to the left of the f2 lens. An object is now placed 50.0 cm to the left of the f1 lens, and a final image due to light passing though both lenses forms. By what factor is the final image different in size from the object? (a) 0.600 (b) 1.20 (c) 2.40 (d) 3.60 (e) none of those answersarrow_forwardA particular patients eyes are unable to focus on objects closer than 35.0 cm and corrective lenses are to be prescribed so that the patient can focus on objects 20.0 cm from their eyes. (a) Is the patient nearsighted or farsighted? (b) If contact lenses are to lie prescribed, determine the required lens power. (c) If eyeglasses are to be prescribed instead and the distance between the eyes and the lenses is 2.00 cm, determine the power of the required corrective lenses. (d) Are the required lenses converging or diverging?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY