
University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 34.26E
The glass rod of Exercise 34.25 is immersed in a liquid. An object 14.0 cm from the vertex of the left end of the rod and on its axis is imaged at a point 9.00 cm from the vertex inside the liquid. What is the index of refraction of the liquid?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below.
F(N)
4
3
A
2
t(s)
1
2 3
45
(a) Find the impulse of the force over the 5.00-s time interval.
==
N⚫s
(b) Find the final velocity the particle attains if it is originally at rest.
m/s
(c) Find its final velocity if its original velocity is -3.50 î m/s.
V₁
m/s
(d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s.
=
avg
N
••63 SSM www In the circuit of
Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF,
R₁
S
R₂
R3
800
C
H
R₁ = R₂ = R3 = 0.73 MQ. With C
completely uncharged, switch S is
suddenly closed (at t = 0). At t = 0,
what are (a) current i̟ in resistor 1,
(b) current 2 in resistor 2, and
(c) current i3 in resistor 3? At t = ∞o
(that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz?
What is the potential difference V2 across resistor 2 at (g) t = 0 and
(h) t = ∞o? (i) Sketch V2 versus t between these two extreme times.
Figure 27-65 Problem 63.
Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.
Chapter 34 Solutions
University Physics (14th Edition)
Ch. 34 - A spherical mirror is cut in half horizontally....Ch. 34 - For the situation shown in Fig. 34.3, is the image...Ch. 34 - The laws of optics also apply to electromagnetic...Ch. 34 - Explain why the focal length of a plane mirror is...Ch. 34 - If a spherical mirror is immersed in water, does...Ch. 34 - For what range of object positions does a concave...Ch. 34 - When a room has mirrors on two opposite walls, an...Ch. 34 - For a spherical mirror, if s = f, then s = , and...Ch. 34 - You may have noticed a small convex mirror next to...Ch. 34 - A student claims that she can start a fire on a...
Ch. 34 - A person looks at his reflection in the concave...Ch. 34 - In Example 34.4 (Section 34.2), there appears to...Ch. 34 - Suppose that in the situation of Example 34.7 of...Ch. 34 - The bottom of the passenger-side mirror on your...Ch. 34 - How could you very quickly make an approximate...Ch. 34 - The focal length of a simple lens depends on the...Ch. 34 - When a converging lens is immersed in water, does...Ch. 34 - A spherical air bubble in water can function as a...Ch. 34 - Can an image formed by one reflecting or...Ch. 34 - If a piece of photographic film is placed at the...Ch. 34 - According to the discussion in Section 34.2, light...Ch. 34 - Youve entered a survival contest that will include...Ch. 34 - BIO You cant see clearly underwater with the naked...Ch. 34 - Prob. Q34.24DQCh. 34 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 34 - The image of a tree just covers the length of a...Ch. 34 - A pencil that is 9.0 cm long is held perpendicular...Ch. 34 - A concave mirror has a radius of curvature of 34.0...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 34 - The diameter of Mars is 6794 km, and its minimum...Ch. 34 - An object is 18.0 cm from the center of a...Ch. 34 - Prob. 34.9ECh. 34 - You hold a spherical salad bowl 60 cm in front of...Ch. 34 - A spherical, concave shaving mirror has a radius...Ch. 34 - For a concave spherical mirror that has focal...Ch. 34 - Dental Mirror. A dentist uses a curved mirror to...Ch. 34 - For a convex spherical mirror that has focal...Ch. 34 - The thin glass shell shown in Fig. E34.15 has a...Ch. 34 - A tank whose bottom is a minor is filled with...Ch. 34 - A speck of dirt is embedded 3.50 cm below the...Ch. 34 - A transparent liquid fills a cylindrical tank to a...Ch. 34 - A person swimming 0.80 m below the surface of the...Ch. 34 - Prob. 34.20ECh. 34 - A Spherical Fish Bowl. A small tropical fish is at...Ch. 34 - The left end of a long glass rod 6.00 cm in...Ch. 34 - Prob. 34.23ECh. 34 - The left end of a long glass rod 8.00 cm in...Ch. 34 - Repeat Exercise 34.24 for the case in which the...Ch. 34 - The glass rod of Exercise 34.25 is immersed in a...Ch. 34 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 34 - A lens forms an image of an object. The object is...Ch. 34 - A converging meniscus lens (see Fig. 34.32a) with...Ch. 34 - A converging lens with a focal length of 70.0 cm...Ch. 34 - A converging lens forms an image of an...Ch. 34 - A photographic slide is to the left of a lens. The...Ch. 34 - A double-convex thin lens has surfaces with equal...Ch. 34 - A converging lens with a focal length of 9.00 cm...Ch. 34 - BIO The Cornea As a Simple Lens. The cornea...Ch. 34 - A lensmaker wants to make a magnifying glass from...Ch. 34 - For each thin lens shown in Fig. E34.37, calculate...Ch. 34 - A converging lens with a focal length of 12.0 cm...Ch. 34 - Repeat Exercise 34.38 for the case in which the...Ch. 34 - An object is 16.0 cm to the left of a lens. The...Ch. 34 - Combination of Lenses I. A 1.20-cm-tall object is...Ch. 34 - Combination of Lenses II. Repeat Exercise 34.41...Ch. 34 - Combination of Lenses III. Two thin lenses with a...Ch. 34 - BIO The Lens or the Eye. The crystalline lens of...Ch. 34 - A camera lens has a focal length of 200 mm. How...Ch. 34 - You wish to project the image of a slide on a...Ch. 34 - When a camera is focused, the lens is moved away...Ch. 34 - Zoom Lens. Consider the simple model of the zoom...Ch. 34 - A camera lens has a focal length of 180.0 mm and...Ch. 34 - BIO Curvature of the Cornea. In a simplified model...Ch. 34 - BIO (a) Where is the near point of an eye for...Ch. 34 - BIO Contact Lenses. Contact lenses are placed...Ch. 34 - BIO Ordinary Glasses. Ordinary glasses are worn in...Ch. 34 - BIO A person can see clearly up close but cannot...Ch. 34 - BIO If the person in Exercise 34.54 chooses...Ch. 34 - A thin lens with a focal length of 6.00 cm is used...Ch. 34 - The focal length of a simple magnifier is 8.00 cm....Ch. 34 - You want to view through a magnifier an insect...Ch. 34 - The focal length of the eyepiece of a certain...Ch. 34 - Resolution of a Microscope. The image formed by a...Ch. 34 - A telescope is constructed from two lenses with...Ch. 34 - The eyepiece of a refracting telescope (see Fig....Ch. 34 - A reflecting telescope (Fig. E34.63) is to be made...Ch. 34 - What is the size of the smallest vertical plane...Ch. 34 - If you run away from a plane mirror at 3.60 m/s,...Ch. 34 - Where must you place an object in front of a...Ch. 34 - Prob. 34.67PCh. 34 - A light bulb is 3.00 m from a wall. You are to use...Ch. 34 - CP CALC You are in your car driving on a highway...Ch. 34 - A layer of benzene (n = 1.50) that is 4.20 cm deep...Ch. 34 - Rear-View Mirror. A mirror on the passenger side...Ch. 34 - Figure P34.72 shows a small plant near a thin...Ch. 34 - Pinhole Camera. A pinhole camera is just a...Ch. 34 - A microscope is focused on the upper surface of a...Ch. 34 - What should be the index of refraction of a...Ch. 34 - A Glass Rod. Both ends of a glass rod with index...Ch. 34 - (a) You want to use a lens with a focal length of...Ch. 34 - Autocollimation. You place an object alongside a...Ch. 34 - A lens forms a real image that is 214 cm away from...Ch. 34 - Figure P34.80 shows an object and its image formed...Ch. 34 - Figure P34.81 shows an object and its image formed...Ch. 34 - A transparent rod 30.0 cm long is cut flat at one...Ch. 34 - BIO Focus of the Eye. The cornea of the eye has a...Ch. 34 - The radii of curvature of the surfaces of a thin...Ch. 34 - An object to the left of a lens is imaged by the...Ch. 34 - An object is placed 22.0 cm from a screen. (a) At...Ch. 34 - A convex mirror and a concave mirror are placed on...Ch. 34 - A screen is placed a distance d to the right of an...Ch. 34 - As shown in Fig. P34.89, the candle is at the...Ch. 34 - Two Lenses in Contact. (a) Prove that when two...Ch. 34 - When an object is placed at the proper distance to...Ch. 34 - (a) Repeat the derivation of Eq. (34.19) for the...Ch. 34 - A convex spherical mirror with a focal length of...Ch. 34 - BIO What Is the Smallest Thing We Can See? The...Ch. 34 - Three thin lenses, each with a focal length of...Ch. 34 - A camera with a 90-mm-focal-length lens is focused...Ch. 34 - BIO In one form of cataract surgery the persons...Ch. 34 - BIO A Nearsighted Eye. A certain very nearsighted...Ch. 34 - BIO A person with a near point of 85 cm, but...Ch. 34 - The Galilean Telescope. Figure P34.100 is a...Ch. 34 - Focal Length of a Zoom Lens. Figure P34.101 shows...Ch. 34 - DATA In setting up an experiment for a high school...Ch. 34 - DATA It is your first day at work as a summer...Ch. 34 - Prob. 34.104PCh. 34 - CALC (a) For a lens with focal length f, find the...Ch. 34 - An Object at an Angle. A 16.0-cm-long pencil is...Ch. 34 - BIO People with normal vision cannot focus their...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...Ch. 34 - Given that frogs are nearsighted in air, which...Ch. 34 - BIO AMPHIBIAN VISION. The eyes of amphibians such...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forward
- Consider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forward
- If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forward
- A 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY