EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 34, Problem 34.12CQ
An empty plastic or glass dish being removed from a microwave oven can be cool to the touch, even when food on an adjoining dish is hot. How is this phenomenon possible?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Calculate the amount of microwave energy needed to raise the temperature of 1.00 kg of soup from 20.0 degree Celsius to 100 degree Celsius.
-2. The electric field intensity produced by the
radiations coming from 100 W bulb at a 3 m
distance is E. The electric field intensity produced
by the radiations coming from 50 W bulb at the
same distance is :
(a)
(c)
E
10
2
ud
(b) 2E.
(d) √2E.
The average intensity of sunlight on Earth’s surface is about 700 W/m2 .
(a) Calculate the amount of energy that falls on a solar collector having an area of 0.500 m2 in 4.00 h .
(b) What intensity would such sunlight have if concentrated by a magnifying glass onto an area 200 times smaller than its own?
Chapter 34 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 34 - Prob. 34.1QQCh. 34 - What is the phase difference between the...Ch. 34 - Prob. 34.3QQCh. 34 - Prob. 34.4QQCh. 34 - If the antenna in Figure 33.11 represents the...Ch. 34 - Prob. 34.6QQCh. 34 - A radio wave of frequency on the order of 105 Hz...Ch. 34 - A spherical interplanetary grain of dust of radius...Ch. 34 - Prob. 34.2OQCh. 34 - A typical microwave oven operates at a frequency...
Ch. 34 - Prob. 34.4OQCh. 34 - Prob. 34.5OQCh. 34 - Which of the following statements are true...Ch. 34 - Prob. 34.7OQCh. 34 - Prob. 34.8OQCh. 34 - An electromagnetic wave with a peak magnetic field...Ch. 34 - Prob. 34.10OQCh. 34 - Prob. 34.11OQCh. 34 - suppose a creature from another planet has eyes...Ch. 34 - Prob. 34.2CQCh. 34 - Prob. 34.3CQCh. 34 - List at least three differences between sound...Ch. 34 - If a high-frequency current exists in a solenoid...Ch. 34 - Prob. 34.6CQCh. 34 - Prob. 34.7CQCh. 34 - Do Maxwells equations allow for the existence of...Ch. 34 - Prob. 34.9CQCh. 34 - What does a radio wave do to the charges in the...Ch. 34 - Prob. 34.11CQCh. 34 - An empty plastic or glass dish being removed from...Ch. 34 - Prob. 34.13CQCh. 34 - Prob. 34.1PCh. 34 - Prob. 34.2PCh. 34 - Prob. 34.3PCh. 34 - An election moves through a uniform electric field...Ch. 34 - A proton moves through a region containing a...Ch. 34 - Prob. 34.6PCh. 34 - Suppose you are located 180 in from a radio...Ch. 34 - A diathermy machine, used in physiotherapy,...Ch. 34 - The distance to the North Star, Polaris, is...Ch. 34 - Prob. 34.10PCh. 34 - Review. A standing-wave pattern is set up by radio...Ch. 34 - Prob. 34.12PCh. 34 - The speed of an electromagnetic wave traveling in...Ch. 34 - A radar pulse returns to the transmitterreceiver...Ch. 34 - Figure P34.15 shows a plane electromagnetic...Ch. 34 - Verify by substitution that the following...Ch. 34 - Review. A microwave oven is powered by a...Ch. 34 - Why is the following situation impossible? An...Ch. 34 - ln SI units, the electric field in an...Ch. 34 - At what distance from the Sun is the intensity of...Ch. 34 - If the intensity of sunlight at the Earths surface...Ch. 34 - Prob. 34.22PCh. 34 - A community plans to build a facility to convert...Ch. 34 - Prob. 34.24PCh. 34 - Prob. 34.25PCh. 34 - Review. Model the electromagnetic wave in a...Ch. 34 - High-power lasers in factories are used to cut...Ch. 34 - Consider a bright star in our night sky. Assume...Ch. 34 - What is the average magnitude of the Poynting...Ch. 34 - Prob. 34.30PCh. 34 - Review. An AM radio station broadcasts...Ch. 34 - Prob. 34.32PCh. 34 - Prob. 34.33PCh. 34 - Prob. 34.34PCh. 34 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 34 - A radio wave transmits 25.0 W/m2 of power per unit...Ch. 34 - Prob. 34.37PCh. 34 - Prob. 34.38PCh. 34 - A uniform circular disk of mass m = 24.0 g and...Ch. 34 - The intensity of sunlight at the Earths distance...Ch. 34 - Prob. 34.41PCh. 34 - Assume the intensity of solar radiation incident...Ch. 34 - A possible means of space flight is to place a...Ch. 34 - Extremely low-frequency (ELF) waves that can...Ch. 34 - A Marconi antenna, used by most AM radio stations,...Ch. 34 - A large, flat sheet carries a uniformly...Ch. 34 - Prob. 34.47PCh. 34 - Prob. 34.48PCh. 34 - Two vertical radio-transmitting antennas are...Ch. 34 - Prob. 34.50PCh. 34 - What are the wavelengths of electromagnetic waves...Ch. 34 - An important news announcement is transmitted by...Ch. 34 - In addition to cable and satellite broadcasts,...Ch. 34 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 34 - Assume the intensity of solar radiation incident...Ch. 34 - In 1965, Arno Penzias and Robert Wilson discovered...Ch. 34 - The eye is most sensitive to light having a...Ch. 34 - Prob. 34.58APCh. 34 - One goal of the Russian space program is to...Ch. 34 - A microwave source produces pulses of 20.0GHz...Ch. 34 - The intensity of solar radiation at the top of the...Ch. 34 - Prob. 34.62APCh. 34 - Consider a small, spherical particle of radius r...Ch. 34 - Consider a small, spherical particle of radius r...Ch. 34 - A dish antenna having a diameter of 20.0 m...Ch. 34 - The Earth reflects approximately 38.0% of the...Ch. 34 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 34 - Prob. 34.68APCh. 34 - Prob. 34.69APCh. 34 - You may wish to review Sections 16.4 and 16.8 on...Ch. 34 - Prob. 34.71APCh. 34 - Prob. 34.72APCh. 34 - Prob. 34.73APCh. 34 - Prob. 34.74APCh. 34 - Prob. 34.75APCh. 34 - Prob. 34.76CPCh. 34 - A linearly polarized microwave of wavelength 1.50...Ch. 34 - Prob. 34.78CPCh. 34 - Prob. 34.79CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The tungsten elements of incandescent light bulbs operate at 3200 K. At what frequency does the filament radiate maximum energy?arrow_forwardA dark red clay brick in space is continuously exposed to sunlight such that it absorbs 10 Watts of electromagnetic power. But under these conditions the brick's temperature is observed to be constant. a) Describe the energy flows into and out of the brick - what mechanisms are involved, and what are the relative sizes of those energy flows? b) The brick is instantly, painted black. (Don't worry about how.) Do the energy flows and temperature change? Explain.arrow_forwardProblem: Radiation Related The energy flux associated with solar radiation incident on the outer surface of the earth's atmosphere has been accurately measured and is known to be 1,368 W/m^2. The diameters of the sun and earth are 1.39 X 10^9 and 1.27 x 10^7 m, respectively, and the distance between the sun and the earth is 1.5 × 10^11 m. (a) What is the emissive power of the sun? (b) Approximating the sun's surface as black, what is its temperature? (c) At what wavelength is the spectral emissive power of the sun a maximum? (d) Assuming the earth's surface to be black and the sun to be the only source of energy for the earth, estimate the earth's surface temperature.arrow_forward
- When penetrating radiation is directed at a material, the radiation intensity Increases linearly with increasing material thickness Decreases exponentially with decreasing material thickness Decreases linearly with increasing material thickness Decreases exponentially with increasing material thickness Increases exponentially with increasing material thicknessarrow_forwardThe temperature of a student’s skin is 33.0°C. At what wavelength does the radiation emitted from the skin reach its peak?arrow_forwardCurrent Attempt in Progress The power radiated by the sun is 3.9 × 10²6 W. The earth orbits the sun in a nearly circular orbit of radius 1.5 × 10¹¹ m. The earth's axis of rotation is tilted by 23.4° relative to the plane of the orbit (see the drawing), so sunlight does not strike the equator perpendicularly. What power strikes a 0.29-m² patch of flat land at the equator at point Q? Number Sunlight Axis of rotation Save for Later Equator 0 eTextbook and Media 23.40 Units î Attempts: 0 of 5 used Submit Answorarrow_forward
- Part C Estimate the surface temperature of the blue star. Assume that blue color corresponds to wavelengths of approximately 470 nm. Express your answer in kelvins. Templates Symbols undo redo reset keyboard shortcuts help True = K Submit Request Answer Part D Estimate the surface temperature of the white star. Since green is in the middle of the visible spectrum, choose a 520 nm wavelength for the white star. Express your answer in kelvins. Templates Symbols undo rego reset keyboard shortcuts help Twhite = Karrow_forwardA UV lamp used to disinfect objects emits radiation with an rms electric field strength of 65 N/C. Calculate the energy absorbed by a circular target of radius 2 cm that is placed under the lamp for 231 seconds.(Give your answer in joules but don't include the units.)arrow_forwardSolar radiation reaches Earth at a rate of about 1,400 W/m2. If all this energy were absorbed, what would be the average force exerted by radiation pressure on a square meter oriented at right angles to the sunlight?arrow_forward
- What is the relationship between the radiation intensity and the distance of the source?arrow_forwardA certain radar installation tracks airplanes by transmitting electromagnetic radiation of wavelength 3 cm. (a) Show that the frequency of this radiation is 10 GHz. (b) Show that the time required for a pulse of radar waves to reach an airplane 5 km away and return is 3.3 × 10−5arrow_forwardWhen an electromagnetic (EM) wave of frequency less than the threshold frequency of a metal incident on a plate made from the metal, The EM wave is totally absorbed by the metal Electrons are not ejected Electrons start to eject from the metal surface The frequency of reflected EM wave from the metal is larger than the original wavearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
What Are Electromagnetic Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=ftyxZBxBexI;License: Standard YouTube License, CC-BY