Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 34, Problem 27EAP
Find the focal length of the glass lens in FIGURE EX34.27.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A contact lens is made of plastic with an index of refraction of 1.60. The lens has an outer radius of curvature of +1.91 cm and an
inner radius of curvature of +2.49 cm. What is the focal length of the lens?
cm
Need Help?
Watch It
Read It
HW Q8
A 1.50 cm tall object is 22 cm to the legt of a lens with a focal length of 11 cm. A second lens with a focal length of 39 cm is 48 cm to the right of the first lens.
a. Calculate the final image location from the second lens.
i2=
b. Calculate the image height.
hi=
Chapter 34 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 34 - Prob. 1CQCh. 34 - Prob. 2CQCh. 34 - Prob. 3CQCh. 34 - Prob. 4CQCh. 34 - A fish in an aquarium with flat sides looks out at...Ch. 34 - Prob. 6CQCh. 34 - 7. The object and lens in FIGURE Q34.7 are...Ch. 34 - Prob. 8CQCh. 34 - Prob. 9CQCh. 34 - Prob. 10CQ
Ch. 34 - Prob. 11CQCh. 34 - Prob. 1EAPCh. 34 - a. How long (in ns) does it take light to travel...Ch. 34 - Prob. 3EAPCh. 34 - Prob. 4EAPCh. 34 - Prob. 5EAPCh. 34 - The mirror in FIGURE EX34.6 deflects a horizontal...Ch. 34 - Prob. 7EAPCh. 34 - Prob. 8EAPCh. 34 - Prob. 9EAPCh. 34 - Prob. 10EAPCh. 34 - Prob. 11EAPCh. 34 - Prob. 12EAPCh. 34 - Prob. 13EAPCh. 34 - Prob. 14EAPCh. 34 - Prob. 15EAPCh. 34 - Prob. 16EAPCh. 34 - Prob. 17EAPCh. 34 - Prob. 18EAPCh. 34 - Prob. 19EAPCh. 34 - Prob. 20EAPCh. 34 - An object is 20 cm in front of a converging lens...Ch. 34 - Prob. 22EAPCh. 34 - Prob. 23EAPCh. 34 - An object is 15 cm in front of a diverging lens...Ch. 34 - Prob. 25EAPCh. 34 - Prob. 26EAPCh. 34 - Find the focal length of the glass lens in FIGURE...Ch. 34 - Prob. 28EAPCh. 34 - Prob. 29EAPCh. 34 - Prob. 30EAPCh. 34 - Prob. 31EAPCh. 34 - Prob. 32EAPCh. 34 - Prob. 33EAPCh. 34 - 34. A 1.0-cm-tail object is 75 cm in front of a...Ch. 34 - Prob. 35EAPCh. 34 - Prob. 36EAPCh. 34 - Prob. 37EAPCh. 34 - Prob. 38EAPCh. 34 - Prob. 39EAPCh. 34 - Prob. 40EAPCh. 34 - Prob. 41EAPCh. 34 - Prob. 42EAPCh. 34 - Prob. 43EAPCh. 34 - Prob. 44EAPCh. 34 - Prob. 45EAPCh. 34 - Prob. 46EAPCh. 34 - Prob. 47EAPCh. 34 - Prob. 48EAPCh. 34 - Prob. 49EAPCh. 34 - 50. A horizontal meter stick is centered at the...Ch. 34 - Prob. 51EAPCh. 34 - 52. It’s nighttime, and you’ve dropped your...Ch. 34 - Prob. 53EAPCh. 34 - Prob. 54EAPCh. 34 - Prob. 55EAPCh. 34 - Prob. 56EAPCh. 34 - Prob. 57EAPCh. 34 - Prob. 58EAPCh. 34 - You’re visiting the shark tank at the aquarium...Ch. 34 - Prob. 60EAPCh. 34 - To determine the focal length of a lens, you place...Ch. 34 - Prob. 62EAPCh. 34 - Prob. 63EAPCh. 34 - Prob. 64EAPCh. 34 - Prob. 65EAPCh. 34 - Prob. 66EAPCh. 34 - Prob. 67EAPCh. 34 - Prob. 68EAPCh. 34 - Prob. 69EAPCh. 34 - An old-fashioned slide projector needs to create a...Ch. 34 - Prob. 71EAPCh. 34 - Prob. 72EAPCh. 34 - Prob. 73EAPCh. 34 - 74. An object is 60 cm from a screen. What are the...Ch. 34 - A wildlife photographer with a 200-mm-focal-length...Ch. 34 - A concave mirror has a 40 cm radius of curvature....Ch. 34 - A 2.0-cm-tall object is placed in front of a...Ch. 34 - Prob. 78EAPCh. 34 - Prob. 79EAPCh. 34 - Prob. 80EAPCh. 34 - Prob. 81EAPCh. 34 - Prob. 82EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P38.43 shows a concave meniscus lens. If |r1| = 8.50 cm and |r2| = 6.50 cm, find the focal length and determine whether the lens is converging or diverging. The lens is made of glass with index of refraction n = 1.55. CHECK and THINK: How do your answers change if the object is placed on the right side of the lens? FIGURE P38.43arrow_forwardIn Figure P35.30, a thin converging lens of focal length 14.0 cm forms an image of the square abed, which is he = hb = 10.0 cm high and lies between distances of pd = 20.0 cm and pa = 30.0 cm from the lens. Let a, b, c. and d represent the respective corners of the image. Let qa represent the image distance for points a and b, qd represent the image distance for points c and d, hb, represent the distance from point b to the axis, and hc represent the height of c. (a) Find qa, qd, hb, and hc. (b) Make a sketch of the image. (c) The area of the object is 100 cm2. By carrying out the following steps, you will evaluate the area of the image. Let q represent the image distance of any point between a and d, for which the object distance is p. Let h represent the distance from the axis to the point at the edge of the image between b and c at image distance q. Demonstrate that h=10.0q(114.01q) where h and q are in centimeters. (d) Explain why the geometric area of the image is given by qaqdhdq (e) Carry out the integration to find the area of the image. Figure P35.30arrow_forwardA converging lens made of crown glass has a focal length of 15.0 cm when used in air. If the lens is immersed in water, what is its focal length? (a) negative (b) less than 15.0 cm (c) equal to 15.0 cm (d) greater than 15.0 cm (e) none of those answersarrow_forward
- The radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forwardA lamp of height S cm is placed 40 cm in front of a converging lens of focal length 20 cm. There is a plane mirror 15 cm behind the lens. Where would you find the image when you look in the mirror?arrow_forwardShow that the magnification of a thin lens is given by M = di/do (Eq. 38.6). Hint: Follow the derivation of the lens makers equation (page 1233) and start with a thick lens.arrow_forward
- Two converging lenses having focal lengths of f1 = 10.0 cm and f2 = 20.0 cm are placed a distance d = 50.0 cm apart as shown in Figure P35.48. The image due to light passing through both lenses is to be located between the lenses at the position x = 31.0 cm indicated. (a) At what value of p should the object be positioned to the left of the first lens? (b) What is the magnification of the final image? (c) Is the final image upright or inverted? (d) Is the final image real or virtual?arrow_forwardWhat is the focal length of a pane of window glass? (a) zero (b) infinity (c) the thickness of the glass (d) impossible to determinearrow_forwardFigure shows an object and its image formed by a thin lens. (a) What is the focal length of the lens, and what type of lens (converging or diverging) is it? (b) What is the height of the image? Is it real or virtual?arrow_forward
- A 5.87 mm high firefly sits on the axis of, and 12.5 cm in front of, the thin lens A, whose focal length is 6.05 cm. Behind lens A there is another thin lens, lens B, with a focal length of 23.7 cm. The two lenses share a common axis and are 60.7 cm apart. What is the height of this image? Express the answer as a positive number.arrow_forwardYo Z = CONVEX LENS Do F Di I Y; f The figure shows light rays passing through a convex lens. The focal length is f = 1 cm and the object (the upright arrow) has Do 1.400 cm and yo = 1 cm. Determine the lengths D; and yi.arrow_forwardA 2.0-cm object is placed 30.0 cm from a converging lens that has a focal length of 10.0 cm as shown in the figure. What is the height of the image? Lens Object F i10.0 cml 30.0 cm Provide the answer: cmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY