Suppose you measure the red shifts of all the images produced by gravitational lensing, such as in Figure 34.12. You find that the central image has a red shill less than the outer images, and those all have the same red shift. Discuss how this not only shows that the images are of the same object, but also implies than the red shift is not affected by taking different paths through space. Does it imply that cosmological red shifts are not caused by traveling through space (light getting tired, perhaps)?
Suppose you measure the red shifts of all the images produced by gravitational lensing, such as in Figure 34.12. You find that the central image has a red shill less than the outer images, and those all have the same red shift. Discuss how this not only shows that the images are of the same object, but also implies than the red shift is not affected by taking different paths through space. Does it imply that cosmological red shifts are not caused by traveling through space (light getting tired, perhaps)?
Suppose you measure the red shifts of all the images produced by gravitational lensing, such as in Figure 34.12. You find that the central image has a red shill less than the outer images, and those all have the same red shift. Discuss how this not only shows that the images are of the same object, but also implies than the red shift is not affected by taking different paths through space. Does it imply that cosmological red shifts are not caused by traveling through space (light getting tired, perhaps)?
20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie
the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres
are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.