MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
4th Edition
ISBN: 9780135245033
Author: Knight
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 9CQ
A Michelson interferometer using 800 nm light is adjusted to have a bright central spot. One mirror is then moved 200 nm forward, the other 200 nm back. Afterward, is the central spot bright, dark, or in between? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two components of an interferometer are a moveable mirror and a beam splitter. Which of the following are NOT true statements regarding each component in creating an interferogram?
I. When the mirror travels a distance of λ/4, deconstructive interference occurs.
II. The beam splitter alternates the incident light between a reference and the sample.
III. When the mirror travels a distance of λ/2, deconstructive interference occurs.
IV. The beam splitter splits the incident light between the stationary mirror and the moveable mirror.
A. I and II B.I and IV C.II and III D.II and IV E.III and IV
4
A photographer is attempting to take a photo of two ships on the horizon which are separated by a distance L = 1.3 m. The camera has an aperture of D = 1.2 cm. Assume the range of visible light is 400 nm - 700 nm.
A. Find the minimum angle of resolution in degrees.
B. What is the maximum distance, in meters, that the ships can be from the photographer to get a resolvable picture?
Chapter 33 Solutions
MASTERPHYS:KNIGHT'S PHYSICS ACCESS+WKB
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While using a Michelson interferometer (shown in Fig. 37.13), you see a dark circle at the center of the interference pattern, (i) As you gradually move the light source toward the central mirror M0, through a distance /2, what do you see? (a) There is no change in the pattern, (b) The dark circle changes into a bright circle. (c) The dark circle changes into a bright circle and then back into a dark circle. (d) The dark circle changes into a bright circle, then into a dark circle, and then into a bright circle. (ii) As you gradually move the moving mirror toward the central mirror M0, through a distance /2, what tit) you see? Choose from the same possibilities.arrow_forward. Moving mirror M₂ of a Michelson interferometer a distance of 100 μm causes 500 bright-dark-bright fringe shifts. What is the wavelength of the light?arrow_forwardIn a Michelson interferometer, a laser beam is split into two beams as shown in the figure. When the two beams are combined, an interference pattern is seen on the observation screen. The interference pattern is a series of concentric bright circles separated by dark ones as shown in the figure. At the center of the pattern is a bright circular spot. Suppose the movable mirror is slowly moved toward the beam splitter by distance 1/2. As this is done, what happens to the interference pattern? a) There is no change in the interference pattern. b) The interference pattern becomes brighter, but otherwise remains the same. c) The central bright spot turns into a dark spot (B → D). d) The central bright spot turns into a dark spot and then back into a bright spot (B → D → B). e) The central bright spot turns into a dark spot, then into a bright spot, and then back into a dark spot (B → D → B → D). Fixed Mirror Beam Splitter Movable LASER Mirror a Observation Screenarrow_forward
- The Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forwardFour coherent EM waves have intensities of lo, 0.30010, 0.200/0, and 0.400/o. The second is 180° out of phase with the first; the third and fourth are in phase with the first. What is the intensity of the superposition of the four? | loarrow_forwardAn astronaut can barely resolve two objects on the earth’s surface, 170 km below. The diameter of the astronaut’s pupils is 5.0 mm, and the wavelength of the light is 550 nm. What is the minimum distance smin that separates the two objects? I have no clue how to solve for thisarrow_forward
- Two stars 17 light-years away are barely resolved by a 66 cm (mirror diameter) telescope. 1ly=9.461×10^15 How far apart are the stars? Assume λ = 550 nm and that the resolution is limited by diffraction. Express your answer to two significant figures in marrow_forwardA Michelson interferometer uses light from a sodium lamp. Sodium atoms emit light having wavelengths 589.0 nm and 589.6 nm. The interferometer is initially set up with both arms of equal length (i.e., L1 = L2), producing a bright spot at the center of the interference pattern. How far must mirror M2 be moved so that one wavelength has produced one more new maximum than the other wavelength?arrow_forward1.arrow_forward
- 4. Consider the Michelson interferometer shown in Fig. 2. In one of the optical branches, there is an air-tight chamber of length d = 4 cm. When the gas is evacuated from the chamber, the interference pattern shifts by 3000 fringes at a wavelength of 620 nm. Determine the index of refraction of the gas inside the chamber.arrow_forwardMonochromatic light traveling through medium 1 refracts when it enters medium 2. The incident angle is 40.0° and the refracted angle is 28.0°. Compared to the frequency of the light as it travels through medium 1, f₁, the frequency of the light as it travels through medium 2, f2, is: f₂ = 0.700f₁ f2 = 0.730f₁ f₂ = f₁ f2 = 1.37f1 f₂ = 1.43f1arrow_forwardHumans have two eyes separated by about 8.7 cm and a marvelous computer between the ears. If this optical interferometer is just as good as one eyeball and as large as the separation of two regular eyeballs, what is the diffraction limit in arcsec of human vision for visible light at 607 nmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY