Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
4th Edition
ISBN: 9780134564234
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 9CQ
A Michelson interferometer using 800 nm light is adjusted to have a bright central spot. One mirror is then moved 200 nm forward, the other 200 nm back. Afterward, is the central spot bright, dark, or in between? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two components of an interferometer are a moveable mirror and a beam splitter. Which of the following are NOT true statements regarding each component in creating an interferogram?
I. When the mirror travels a distance of λ/4, deconstructive interference occurs.
II. The beam splitter alternates the incident light between a reference and the sample.
III. When the mirror travels a distance of λ/2, deconstructive interference occurs.
IV. The beam splitter splits the incident light between the stationary mirror and the moveable mirror.
A. I and II B.I and IV C.II and III D.II and IV E.III and IV
A photographer is attempting to take a photo of two ships on the horizon which are separated by a distance L = 1.3 m. The camera has an aperture of D = 1.2 cm. Assume the range of visible light is 400 nm - 700 nm.
A. Find the minimum angle of resolution in degrees.
B. What is the maximum distance, in meters, that the ships can be from the photographer to get a resolvable picture?
In a Michelson interferometer, a laser beam is split into two beams as shown in the figure.
When the two beams are combined, an interference pattern is seen on the observation
screen. The interference pattern is a series of concentric bright circles separated by dark
ones as shown in the figure. At the center of the pattern is a bright circular spot. Suppose
the movable mirror is slowly moved toward the beam splitter by distance 1/2. As this is
done, what happens to the interference pattern? a) There is no change in the interference
pattern. b) The interference pattern becomes brighter, but otherwise remains the same.
c) The central bright spot turns into a dark spot (B → D). d) The central bright spot turns
into a dark spot and then back into a bright spot (B → D → B). e) The central bright spot
turns into a dark spot, then into a bright spot, and then back into a dark spot (B → D →
B → D).
Fixed Mirror
Beam
Splitter
Movable
LASER
Mirror
a
Observation Screen
Chapter 33 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Books a la Carte Edition; Student Workbook for Physics for Scientists ... eText -- ValuePack Access Card (4th Edition)
Ch. 33 - Prob. 1CQCh. 33 - In a double-slit interference experiment, which of...Ch. 33 - FIGURE Q33.3 shows the viewing screen in a...Ch. 33 - FIGURE Q33.3 is the interference pattern seen on a...Ch. 33 - FIGURE Q33.5 shows the light intensity on a...Ch. 33 - FIGURE Q33.6 shows the light intensity on a...Ch. 33 - Narrow, bright fringes are observed on a screen...Ch. 33 - a. Green light shines through a 100-mm-diameter...Ch. 33 - A Michelson interferometer using 800 nm light is...Ch. 33 - Prob. 10CQ
Ch. 33 - Prob. 1EAPCh. 33 - Prob. 2EAPCh. 33 - Prob. 3EAPCh. 33 - Prob. 4EAPCh. 33 - Light of 630 nm wavelength illuminates two slits...Ch. 33 - Prob. 6EAPCh. 33 - Light from a sodium lamp (=589nm) illuminates two...Ch. 33 - A double-slit interference pattern is created by...Ch. 33 - Prob. 9EAPCh. 33 - Light of wavelength 620 nm illuminates a...Ch. 33 - A diffraction grating produces a first-order...Ch. 33 - Prob. 12EAPCh. 33 - The two most prominent wavelengths in the light...Ch. 33 - Prob. 14EAPCh. 33 - Prob. 15EAPCh. 33 - A helium-neon laser (=633nm) illuminates a single...Ch. 33 - Prob. 17EAPCh. 33 - A 050-mm-wide slit is illuminated by light of...Ch. 33 - 19. You need to use your cell phone, which...Ch. 33 - For what slit-width-to-wavelength ratio does the...Ch. 33 - Light from a helium-neon laser ( = 633 nm) is...Ch. 33 - A laser beam illuminates a single, narrow slit,...Ch. 33 - m-wide slits spaced 0.25 mm apart are illuminated...Ch. 33 - Prob. 24EAPCh. 33 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 33 - Prob. 26EAPCh. 33 - Prob. 27EAPCh. 33 - Your artist friend is designing an exhibit...Ch. 33 - Prob. 29EAPCh. 33 - Prob. 30EAPCh. 33 - Prob. 31EAPCh. 33 - A Michelson interferometer uses light from a...Ch. 33 - FIGURE P33.33 shows the light intensity on a...Ch. 33 - FIGURE P33.34 shows the light intensity en a...Ch. 33 - Prob. 35EAPCh. 33 - Prob. 36EAPCh. 33 - Prob. 37EAPCh. 33 - Prob. 38EAPCh. 33 - Prob. 39EAPCh. 33 - Prob. 40EAPCh. 33 - A triple-slit experiment consists of three narrow...Ch. 33 - Because sound is a wave, it’s possible to make a...Ch. 33 - A diffraction grating with 600 lines/mm is...Ch. 33 - Prob. 44EAPCh. 33 - Prob. 45EAPCh. 33 - A chemist identifies compounds by identifying...Ch. 33 - Prob. 47EAPCh. 33 - For your science fair project you need to design a...Ch. 33 - Prob. 49EAPCh. 33 - Prob. 50EAPCh. 33 - Light from a sodium lamp ( =589 nm) illuminates a...Ch. 33 - The wings of some beetles have closely spaced...Ch. 33 - Prob. 53EAPCh. 33 - Prob. 54EAPCh. 33 - A diffraction grating has slit spacing d. Fringes...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - FIGURE P33.56 shows the light intensity on a...Ch. 33 - A student performing a double-slit experiment is...Ch. 33 - Scientists shine a laser beam on a 35- m-wide...Ch. 33 - Light from a helium-neon laser ( =633 nm)...Ch. 33 - Prob. 62EAPCh. 33 - Prob. 63EAPCh. 33 - Prob. 64EAPCh. 33 - Scientists use laser range-finding to measure the...Ch. 33 - Prob. 66EAPCh. 33 - Prob. 67EAPCh. 33 - Prob. 68EAPCh. 33 - Prob. 69EAPCh. 33 - Prob. 70EAPCh. 33 - Prob. 71EAPCh. 33 - Prob. 72EAPCh. 33 - Prob. 73EAPCh. 33 - FIGURE CP33.74 shows light of wavelength ?...Ch. 33 - Prob. 75EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- While using a Michelson interferometer (shown in Fig. 37.13), you see a dark circle at the center of the interference pattern, (i) As you gradually move the light source toward the central mirror M0, through a distance /2, what do you see? (a) There is no change in the pattern, (b) The dark circle changes into a bright circle. (c) The dark circle changes into a bright circle and then back into a dark circle. (d) The dark circle changes into a bright circle, then into a dark circle, and then into a bright circle. (ii) As you gradually move the moving mirror toward the central mirror M0, through a distance /2, what tit) you see? Choose from the same possibilities.arrow_forwardThe Michelson interferometer can be used to measure the index of refraction of a gas by placing an evacuated transparent tube in the light path along one arm of the device. Fringe shifts occur as the gas is slowly added to the tube. Assume 580-nm light is used, the tube is 5.40 cm long, and 152 fringe shifts occur as the pressure of the gas in the tube increases to atmospheric pressure. What is the index of refraction of the gas? Hint: The fringe shifts occur because the wavelength of the light changes inside the gas-filled tube. (Give your answer to five decimal places.) 4.0arrow_forwardAn astronaut can barely resolve two objects on the earth’s surface, 170 km below. The diameter of the astronaut’s pupils is 5.0 mm, and the wavelength of the light is 550 nm. What is the minimum distance smin that separates the two objects? I have no clue how to solve for thisarrow_forward
- A Michelson interferometer is used with red light of wavelength 632.8 nm and is adjusted for a path difference of 20 μm. Determine the angular radius of the a) first (smallest diameter) ring observed and b) the tenth ring observed.arrow_forwardA Michelson interferometer uses light from a sodium lamp. Sodium atoms emit light having wavelengths 589.0 nm and 589.6 nm. The interferometer is initially set up with both arms of equal length (i.e., L1 = L2), producing a bright spot at the center of the interference pattern. How far must mirror M2 be moved so that one wavelength has produced one more new maximum than the other wavelength?arrow_forward1.arrow_forward
- Monochromatic light traveling through medium 1 refracts when it enters medium 2. The incident angle is 40.0° and the refracted angle is 28.0°. Compared to the frequency of the light as it travels through medium 1, f₁, the frequency of the light as it travels through medium 2, f2, is: f₂ = 0.700f₁ f2 = 0.730f₁ f₂ = f₁ f2 = 1.37f1 f₂ = 1.43f1arrow_forwardA Michelson interferometer uses red light with a wavelength of 656.45 nm from a hydrogen discharge lamp. How many bright-dark-bright fringe shifts are observed if mirror M2 is moved exactly 1 cm?arrow_forwardTwo point sources of light are separated by 5.5 cm a. As viewed through a 13 μmμm diameter pinhole, what is the maximum distance from which they can be resolved if red light ( λλ = 690 nmnm) is used? b. If violet light ( λλ = 420 nmnm ) is used?arrow_forward
- A light ray is incident from air into glass (ng = 1.52) then onto water (nw= 1.33). The wavelength of light in air (na = 1) is Aair = 500 nm and it travels at a speed c= 3 x 10 m/s. The wavelength of light, 1, and its frequency, f, in water, are, respectively: -> 25PM AD 0A ENGarrow_forwardQ1: If the refractive indexes of the mica plate in the direction of the slow axis and the fast axis are as follows: n =1.5977, n1= 1.5936, Find the thickness of this plate needed to make the optical path difference between the two rays passing through the plate equal to a quarter of the wavelength if light of its wavelength was passed through A = 5890 nm.arrow_forwardMirror M₁ in the figure below is moved through a displacement AL. During this displacement, 248 fringe reversals (formation of successive dark or bright bands) are counted. The light being used has a wavelength of 631.4 nm. Calculate the displacement AL. μm A single ray of light is split into two rays by mirror Mo, which is called a beam splitter. Telescope As M₁ is moved, an interference pattern changes in the field of view. Light source L₂ M₂ Mo 4₁ The path difference between the two rays is varied with the adjustable mirror M₁. M₁arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY