
Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN: 9781305658004
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.3, Problem 81E
To determine
To check:
Whether
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I need help explaining on this example on how can I define the Time-Domain Function, Apply the Laplace Transformation Formula, and
ma Classes
Term. Spring 2025
Title
Details
Credit Hours
CRN
Schedule Type
Grade Mode
Level
Date
Status
Message
*MATHEMATICS FOR MANAGEME...
MTH 245, 400
4
54835
Online
Normal Grading Mode
Ecampus Undergradu... 03/21/2025
Registered
**Web Registered...
*SOIL SCIENCE
CSS 205, 400
0
52298
Online
Normal Grading Mode
Undergraduate
03/21/2025
Waitlisted
Waitlist03/21/2025
PLANT PATHOLOGY
BOT 451, 400
4
56960
Online
Normal Grading Mode
Undergraduate
03/21/2025
Registered
**Web Registered...
Records: 3
Schedule
Schedule Details
Here is an augmented matrix for a system of equations (three equations and three variables). Let the
variables used be x, y, and z:
1 2 4 6
0 1
-1
3
0
0
1
4
Note: that this matrix is already in row echelon form.
Your goal is to use this row echelon form to revert back to the equations that this represents, and then to
ultimately solve the system of equations by finding x, y and z.
Input your answer as a coordinate point: (x,y,z) with no spaces.
Chapter 3 Solutions
Elementary Linear Algebra (MindTap Course List)
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10E
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Find the determinant of the matrix in Exercise 15...Ch. 3.1 - Find the determinant of the matrix in Exercise 16...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Prob. 24ECh. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Prob. 32ECh. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant In Exercises 35-38, use a...Ch. 3.1 - Prob. 36ECh. 3.1 - Prob. 37ECh. 3.1 - Prob. 38ECh. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - True or False ? a The determinant of a 22 matrix A...Ch. 3.1 - True or False ? a To find the determinant of a...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Prob. 46ECh. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Show that the system of linear equations...Ch. 3.1 - Prob. 54ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 56ECh. 3.1 - Entries Involving Expressions In Exercises 55-62,...Ch. 3.1 - Prob. 58ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Verifying an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 64ECh. 3.1 - Verify an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 66ECh. 3.1 - Verifying an equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 68ECh. 3.1 - You are given the equation |x0c1xb01a|=ax2+bx+c....Ch. 3.1 - The determinant of a 22 matrix involves two...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 6ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 8ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 10ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 12ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 16ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 18ECh. 3.2 - Properties of Determinant In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Prob. 24ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 26ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 28ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 34ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 36ECh. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Find each determinant. a |cossinsincos| b...Ch. 3.2 - CAPSTONE Evaluate each determinant when a = 1, b =...Ch. 3.2 - Guided Proof Prove Property 2 of Theorem 3.3: When...Ch. 3.2 - Prob. 48ECh. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - Prob. 6ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 8ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 10ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 14ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 16ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 18ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 20ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 24ECh. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - Prob. 30ECh. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Prob. 42ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 44ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 46ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 48ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 50ECh. 3.3 - Finding Determinants In Exercises 51-56, use a...Ch. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - Prob. 54ECh. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Let A and B be square matrices of order 4 such...Ch. 3.3 - CAPSTONE Let A and B be square matrices of order 3...Ch. 3.3 - Proof Let A and B be nn matrices such that...Ch. 3.3 - Prob. 60ECh. 3.3 - Find two 22 matrices such that |A|+|B|=|A+B|.Ch. 3.3 - Prob. 62ECh. 3.3 - Let A be an nn matrix in which the entries of each...Ch. 3.3 - Illustrate the result of Exercise 63 with the...Ch. 3.3 - Guided Proof Prove that the determinant of an...Ch. 3.3 - Prob. 66ECh. 3.3 - Prob. 67ECh. 3.3 - Prob. 68ECh. 3.3 - Prob. 69ECh. 3.3 - Prob. 70ECh. 3.3 - Prob. 71ECh. 3.3 - Prob. 72ECh. 3.3 - Prob. 73ECh. 3.3 - Prob. 74ECh. 3.3 - Prob. 75ECh. 3.3 - Orthogonal Matrices in Exercises 73-78, determine...Ch. 3.3 - Prob. 77ECh. 3.3 - Prob. 78ECh. 3.3 - Prob. 79ECh. 3.3 - Prob. 80ECh. 3.3 - Prob. 81ECh. 3.3 - Prob. 82ECh. 3.3 - Proof If A is an idempotent matrix (A2=A), then...Ch. 3.3 - Prob. 84ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 2ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 10ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 12ECh. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 20ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 22ECh. 3.4 - Prob. 23ECh. 3.4 - Prob. 24ECh. 3.4 - Prob. 25ECh. 3.4 - Prob. 26ECh. 3.4 - Use Cramers Rule to solve the system of linear...Ch. 3.4 - Verify the system of linear equations in cosA,...Ch. 3.4 - Finding the Area of a Triangle In Exercises 29-32,...Ch. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Prob. 38ECh. 3.4 - Prob. 39ECh. 3.4 - Finding an Equation of a Line In Exercises 37-40,...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Software Publishing The table shows the estimate...Ch. 3.4 - Prob. 62ECh. 3.4 - Prob. 63ECh. 3.4 - Prob. 64ECh. 3.4 - Prob. 65ECh. 3.4 - Prob. 66ECh. 3.4 - Prob. 67ECh. 3.4 - Prob. 68ECh. 3.4 - Prob. 69ECh. 3.4 - Prob. 70ECh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 2CRCh. 3.CR - Prob. 3CRCh. 3.CR - Prob. 4CRCh. 3.CR - Prob. 5CRCh. 3.CR - Prob. 6CRCh. 3.CR - Prob. 7CRCh. 3.CR - Prob. 8CRCh. 3.CR - Prob. 9CRCh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 11CRCh. 3.CR - Prob. 12CRCh. 3.CR - Prob. 13CRCh. 3.CR - Prob. 14CRCh. 3.CR - Prob. 15CRCh. 3.CR - Prob. 16CRCh. 3.CR - Prob. 17CRCh. 3.CR - Prob. 18CRCh. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Prob. 21CRCh. 3.CR - Prob. 22CRCh. 3.CR - Prob. 23CRCh. 3.CR - Prob. 24CRCh. 3.CR - Prob. 25CRCh. 3.CR - Prob. 26CRCh. 3.CR - Prob. 27CRCh. 3.CR - Finding Determinants In Exercises 27 and 28, find...Ch. 3.CR - Prob. 29CRCh. 3.CR - Prob. 30CRCh. 3.CR - Prob. 31CRCh. 3.CR - The Determinant of the Inverse of a Matrix In...Ch. 3.CR - Prob. 33CRCh. 3.CR - Prob. 34CRCh. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Prob. 37CRCh. 3.CR - Prob. 38CRCh. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - Prob. 41CRCh. 3.CR - Prob. 42CRCh. 3.CR - Let A and B be square matrices of order 4 such...Ch. 3.CR - Prob. 44CRCh. 3.CR - Prob. 45CRCh. 3.CR - Prob. 46CRCh. 3.CR - Prob. 47CRCh. 3.CR - Show that |a1111a1111a1111a|=(a+3)(a1)3Ch. 3.CR - Prob. 49CRCh. 3.CR - Prob. 50CRCh. 3.CR - Prob. 51CRCh. 3.CR - Prob. 52CRCh. 3.CR - Prob. 53CRCh. 3.CR - Prob. 54CRCh. 3.CR - Prob. 55CRCh. 3.CR - Prob. 56CRCh. 3.CR - Prob. 57CRCh. 3.CR - Prob. 58CRCh. 3.CR - Prob. 59CRCh. 3.CR - Prob. 60CRCh. 3.CR - Prob. 61CRCh. 3.CR - Prob. 62CRCh. 3.CR - Prob. 63CRCh. 3.CR - Prob. 64CRCh. 3.CR - Prob. 65CRCh. 3.CR - Using Cramers Rule In Exercises 65 and 66, use a...Ch. 3.CR - Prob. 67CRCh. 3.CR - Prob. 68CRCh. 3.CR - Prob. 69CRCh. 3.CR - Prob. 70CRCh. 3.CR - Prob. 71CRCh. 3.CR - Prob. 72CRCh. 3.CR - Prob. 73CRCh. 3.CR - Health Care Expenditures The table shows annual...Ch. 3.CR - Prob. 75CRCh. 3.CR - Prob. 76CRCh. 3.CR - True or False? In Exercises 75-78, determine...Ch. 3.CR - Prob. 78CRCh. 3.CM - Prob. 1CMCh. 3.CM - Prob. 2CMCh. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - Use a software program or a graphing utility to...Ch. 3.CM - Prob. 6CMCh. 3.CM - Solve the homogeneous linear system corresponding...Ch. 3.CM - Determine the values of k such that the system is...Ch. 3.CM - Solve for x and y in the matrix equation 2AB=I,...Ch. 3.CM - Find ATA for the matrix A=[531246]. Show that this...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - Prob. 13CMCh. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - Find the sequence of the elementary matrices whose...Ch. 3.CM - Find the determinant of the matrix....Ch. 3.CM - Find a |A|, b |B|, c AB and d |AB| then verify...Ch. 3.CM - Find a |A| and b |A1| A=[523104682]Ch. 3.CM - If |A|=7 and A is of order 4. Then find each...Ch. 3.CM - Use the adjoint of A=[151021102] to find A1Ch. 3.CM - Let X1,X2,X3 and b be the column matrices below....Ch. 3.CM - Use a system of linear equation to find the...Ch. 3.CM - Use a determinant to find an equation of the line...Ch. 3.CM - Use a determinant to find the area of the triangle...Ch. 3.CM - Determine the currents I1I2 and I3 for the...Ch. 3.CM - A manufacture produce three models of a product...Ch. 3.CM - Prob. 29CM
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- 1 3 -4 In the following matrix perform the operation 2R1 + R2 → R2. -2 -1 6 After you have completed this, what numeric value is in the a22 position?arrow_forward5 -2 0 1 6 12 Let A = 6 7 -1 and B = 1/2 3 -14 -2 0 4 4 4 0 Compute -3A+2B and call the resulting matrix R. If rij represent the individual entries in the matrix R, what numeric value is in 131? Input your answer as a numeric value only.arrow_forward1 -2 4 10 My goal is to put the matrix 5 -1 1 0 into row echelon form using Gaussian elimination. 3 -2 6 9 My next step is to manipulate this matrix using elementary row operations to get a 0 in the a21 position. Which of the following operations would be the appropriate elementary row operation to use to get a 0 in the a21 position? O (1/5)*R2 --> R2 ○ 2R1 + R2 --> R2 ○ 5R1+ R2 --> R2 O-5R1 + R2 --> R2arrow_forward
- The 2x2 linear system of equations -2x+4y = 8 and 4x-3y = 9 was put into the following -2 4 8 augmented matrix: 4 -3 9 This augmented matrix is then converted to row echelon form. Which of the following matrices is the appropriate row echelon form for the given augmented matrix? 0 Option 1: 1 11 -2 Option 2: 4 -3 9 Option 3: 10 ܂ -2 -4 5 25 1 -2 -4 Option 4: 0 1 5 1 -2 Option 5: 0 0 20 -4 5 ○ Option 1 is the appropriate row echelon form. ○ Option 2 is the appropriate row echelon form. ○ Option 3 is the appropriate row echelon form. ○ Option 4 is the appropriate row echelon form. ○ Option 5 is the appropriate row echelon form.arrow_forwardLet matrix A have order (dimension) 2x4 and let matrix B have order (dimension) 4x4. What results when you compute A+B? The resulting matrix will have dimensions of 2x4. ○ The resulting matrix will be a single number (scalar). The resulting matrix will have dimensions of 4x4. A+B is undefined since matrix A and B do not have the same dimensions.arrow_forwardIf -1 "[a446]-[254] 4b = -1 , find the values of a and b. ○ There is no solution for a and b. ○ There are infinite solutions for a and b. O a=3, b=3 O a=1, b=2 O a=2, b=1 O a=2, b=2arrow_forward
- A student puts a 3x3 system of linear equations is into an augmented matrix. The student then correctly puts the augmented matrix into row echelon form (REF), which yields the following resultant matrix: -2 3 -0.5 10 0 0 0 -2 0 1 -4 Which of the following conclusions is mathematically supported by the work shown about system of linear equations? The 3x3 system of linear equations has no solution. ○ The 3x3 system of linear equations has infinite solutions. The 3x3 system of linear equations has one unique solution.arrow_forwardSolve the following system of equations using matrices: -2x + 4y = 8 and 4x - 3y = 9 Note: This is the same system of equations referenced in Question 14. If a single solution exists, express your solution as an (x,y) coordinate point with no spaces. If there are infinite solutions write inf and if there are no solutions write ns in the box.arrow_forwardI need help explaining on this examplearrow_forward
- Consider the table of values below. x y 2 64 3 48 4 36 5 27 Fill in the right side of the equation y= with an expression that makes each ordered pari (x,y) in the table a solution to the equation.arrow_forwardsolving for xarrow_forwardConsider the table of values below. x y 2 63 3 70 4 77 5 84 Fill in the right side of the equation y= with an expression that makes each ordered pari (x,y) in the table a solution to the equation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning


Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY