Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN: 9781305658004
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 3.1, Problem 37E
To determine
To find:
The determinant of matrix
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How to solve and explain
(7x^2 -10x +11)-(9x^2 -4x + 6)
Please help me with these questions. I am having a hard time understanding what to do. Thank you
Answers
Chapter 3 Solutions
Elementary Linear Algebra (MindTap Course List)
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Prob. 8ECh. 3.1 - Prob. 9ECh. 3.1 - Prob. 10E
Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - The Determinant of a Matrix In Exercises 1-12,...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Finding the Minors and Cofactors of a Matrix In...Ch. 3.1 - Find the determinant of the matrix in Exercise 15...Ch. 3.1 - Find the determinant of the matrix in Exercise 16...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Prob. 24ECh. 3.1 - Find a Determinant In Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Finding a determinant in Exercises 19-32, use...Ch. 3.1 - Prob. 32ECh. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant in Exercises 33 and 34, use...Ch. 3.1 - Finding a Determinant In Exercises 35-38, use a...Ch. 3.1 - Prob. 36ECh. 3.1 - Prob. 37ECh. 3.1 - Prob. 38ECh. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - Finding the Determinant of a Triangular Matrix In...Ch. 3.1 - True or False ? a The determinant of a 22 matrix A...Ch. 3.1 - True or False ? a To find the determinant of a...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Prob. 46ECh. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 45-48, solve for...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 4952, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Solving an Equation In Exercises 49-52, find the...Ch. 3.1 - Show that the system of linear equations...Ch. 3.1 - Prob. 54ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 56ECh. 3.1 - Entries Involving Expressions In Exercises 55-62,...Ch. 3.1 - Prob. 58ECh. 3.1 - Entries Involving Expressions In Exercises 55- 62,...Ch. 3.1 - Prob. 60ECh. 3.1 - Prob. 61ECh. 3.1 - Prob. 62ECh. 3.1 - Verifying an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 64ECh. 3.1 - Verify an Equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 66ECh. 3.1 - Verifying an equation In Exercises 63-68, evaluate...Ch. 3.1 - Prob. 68ECh. 3.1 - You are given the equation |x0c1xb01a|=ax2+bx+c....Ch. 3.1 - The determinant of a 22 matrix involves two...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 6ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 8ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 10ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 12ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 16ECh. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Prob. 18ECh. 3.2 - Properties of Determinant In Exercises 1-20,...Ch. 3.2 - Properties of Determinants In Exercises 1-20,...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Finding a Determinant In Exercises 2124, use...Ch. 3.2 - Prob. 24ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 26ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 28ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 34ECh. 3.2 - Finding a Determinant In Exercises 25-36, use...Ch. 3.2 - Prob. 36ECh. 3.2 - Prob. 37ECh. 3.2 - Prob. 38ECh. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Finding the Determinant of an Elementary Matrix In...Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Proof Prove the property....Ch. 3.2 - Find each determinant. a |cossinsincos| b...Ch. 3.2 - CAPSTONE Evaluate each determinant when a = 1, b =...Ch. 3.2 - Guided Proof Prove Property 2 of Theorem 3.3: When...Ch. 3.2 - Prob. 48ECh. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - The determinant of a matrix product In Exercises...Ch. 3.3 - Prob. 6ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 8ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 10ECh. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - The Determinant of a scalar multiple of a Matrix...Ch. 3.3 - Prob. 14ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 16ECh. 3.3 - The Determinant of a Matrix Sum In Exercises...Ch. 3.3 - Prob. 18ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 20ECh. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Classifying Matrices as Singular or Nonsingular In...Ch. 3.3 - Prob. 24ECh. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - The Determinant of a Matrix in Exercises 25-30,...Ch. 3.3 - Prob. 30ECh. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - System of Linear Equation In Exercises 31-36, use...Ch. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Singular Matrices In Exercises 37-42, find the...Ch. 3.3 - Prob. 42ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 44ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 46ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 48ECh. 3.3 - Finding Determinants In Exercises 43-50, find...Ch. 3.3 - Prob. 50ECh. 3.3 - Finding Determinants In Exercises 51-56, use a...Ch. 3.3 - Prob. 52ECh. 3.3 - Prob. 53ECh. 3.3 - Prob. 54ECh. 3.3 - Prob. 55ECh. 3.3 - Prob. 56ECh. 3.3 - Let A and B be square matrices of order 4 such...Ch. 3.3 - CAPSTONE Let A and B be square matrices of order 3...Ch. 3.3 - Proof Let A and B be nn matrices such that...Ch. 3.3 - Prob. 60ECh. 3.3 - Find two 22 matrices such that |A|+|B|=|A+B|.Ch. 3.3 - Prob. 62ECh. 3.3 - Let A be an nn matrix in which the entries of each...Ch. 3.3 - Illustrate the result of Exercise 63 with the...Ch. 3.3 - Guided Proof Prove that the determinant of an...Ch. 3.3 - Prob. 66ECh. 3.3 - Prob. 67ECh. 3.3 - Prob. 68ECh. 3.3 - Prob. 69ECh. 3.3 - Prob. 70ECh. 3.3 - Prob. 71ECh. 3.3 - Prob. 72ECh. 3.3 - Prob. 73ECh. 3.3 - Prob. 74ECh. 3.3 - Prob. 75ECh. 3.3 - Orthogonal Matrices in Exercises 73-78, determine...Ch. 3.3 - Prob. 77ECh. 3.3 - Prob. 78ECh. 3.3 - Prob. 79ECh. 3.3 - Prob. 80ECh. 3.3 - Prob. 81ECh. 3.3 - Prob. 82ECh. 3.3 - Proof If A is an idempotent matrix (A2=A), then...Ch. 3.3 - Prob. 84ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 2ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Prob. 6ECh. 3.4 - Prob. 7ECh. 3.4 - Finding the Adjoint and Inverse of a Matrix In...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 10ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 12ECh. 3.4 - Prob. 13ECh. 3.4 - Prob. 14ECh. 3.4 - Prob. 15ECh. 3.4 - Prob. 16ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 20ECh. 3.4 - Using Cramers Rule In Exercises 9-22, use Cramers...Ch. 3.4 - Prob. 22ECh. 3.4 - Prob. 23ECh. 3.4 - Prob. 24ECh. 3.4 - Prob. 25ECh. 3.4 - Prob. 26ECh. 3.4 - Use Cramers Rule to solve the system of linear...Ch. 3.4 - Verify the system of linear equations in cosA,...Ch. 3.4 - Finding the Area of a Triangle In Exercises 29-32,...Ch. 3.4 - Prob. 30ECh. 3.4 - Prob. 31ECh. 3.4 - Prob. 32ECh. 3.4 - Prob. 33ECh. 3.4 - Prob. 34ECh. 3.4 - Prob. 35ECh. 3.4 - Prob. 36ECh. 3.4 - Prob. 37ECh. 3.4 - Prob. 38ECh. 3.4 - Prob. 39ECh. 3.4 - Finding an Equation of a Line In Exercises 37-40,...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Finding the Volume of a Tetrahedron In Exercises...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In Exercises 47-52,...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Testing for Coplanar Points In exercises 47-52...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Finding an equation of a plane In Exercises 53-58,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Using Cramers Rule In Exercises 59 and 60,...Ch. 3.4 - Software Publishing The table shows the estimate...Ch. 3.4 - Prob. 62ECh. 3.4 - Prob. 63ECh. 3.4 - Prob. 64ECh. 3.4 - Prob. 65ECh. 3.4 - Prob. 66ECh. 3.4 - Prob. 67ECh. 3.4 - Prob. 68ECh. 3.4 - Prob. 69ECh. 3.4 - Prob. 70ECh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 2CRCh. 3.CR - Prob. 3CRCh. 3.CR - Prob. 4CRCh. 3.CR - Prob. 5CRCh. 3.CR - Prob. 6CRCh. 3.CR - Prob. 7CRCh. 3.CR - Prob. 8CRCh. 3.CR - Prob. 9CRCh. 3.CR - The Determinant of a Matrix In Exercises 1-18,...Ch. 3.CR - Prob. 11CRCh. 3.CR - Prob. 12CRCh. 3.CR - Prob. 13CRCh. 3.CR - Prob. 14CRCh. 3.CR - Prob. 15CRCh. 3.CR - Prob. 16CRCh. 3.CR - Prob. 17CRCh. 3.CR - Prob. 18CRCh. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Properties of Determinants In Exercises 19-22,...Ch. 3.CR - Prob. 21CRCh. 3.CR - Prob. 22CRCh. 3.CR - Prob. 23CRCh. 3.CR - Prob. 24CRCh. 3.CR - Prob. 25CRCh. 3.CR - Prob. 26CRCh. 3.CR - Prob. 27CRCh. 3.CR - Finding Determinants In Exercises 27 and 28, find...Ch. 3.CR - Prob. 29CRCh. 3.CR - Prob. 30CRCh. 3.CR - Prob. 31CRCh. 3.CR - The Determinant of the Inverse of a Matrix In...Ch. 3.CR - Prob. 33CRCh. 3.CR - Prob. 34CRCh. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Solving a System of Linear Equations In Exercises...Ch. 3.CR - Prob. 37CRCh. 3.CR - Prob. 38CRCh. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - System of Linear Equation In Exercises 37-42, use...Ch. 3.CR - Prob. 41CRCh. 3.CR - Prob. 42CRCh. 3.CR - Let A and B be square matrices of order 4 such...Ch. 3.CR - Prob. 44CRCh. 3.CR - Prob. 45CRCh. 3.CR - Prob. 46CRCh. 3.CR - Prob. 47CRCh. 3.CR - Show that |a1111a1111a1111a|=(a+3)(a1)3Ch. 3.CR - Prob. 49CRCh. 3.CR - Prob. 50CRCh. 3.CR - Prob. 51CRCh. 3.CR - Prob. 52CRCh. 3.CR - Prob. 53CRCh. 3.CR - Prob. 54CRCh. 3.CR - Prob. 55CRCh. 3.CR - Prob. 56CRCh. 3.CR - Prob. 57CRCh. 3.CR - Prob. 58CRCh. 3.CR - Prob. 59CRCh. 3.CR - Prob. 60CRCh. 3.CR - Prob. 61CRCh. 3.CR - Prob. 62CRCh. 3.CR - Prob. 63CRCh. 3.CR - Prob. 64CRCh. 3.CR - Prob. 65CRCh. 3.CR - Using Cramers Rule In Exercises 65 and 66, use a...Ch. 3.CR - Prob. 67CRCh. 3.CR - Prob. 68CRCh. 3.CR - Prob. 69CRCh. 3.CR - Prob. 70CRCh. 3.CR - Prob. 71CRCh. 3.CR - Prob. 72CRCh. 3.CR - Prob. 73CRCh. 3.CR - Health Care Expenditures The table shows annual...Ch. 3.CR - Prob. 75CRCh. 3.CR - Prob. 76CRCh. 3.CR - True or False? In Exercises 75-78, determine...Ch. 3.CR - Prob. 78CRCh. 3.CM - Prob. 1CMCh. 3.CM - Prob. 2CMCh. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - In Exercises 3and4, use Gaussian elimination to...Ch. 3.CM - Use a software program or a graphing utility to...Ch. 3.CM - Prob. 6CMCh. 3.CM - Solve the homogeneous linear system corresponding...Ch. 3.CM - Determine the values of k such that the system is...Ch. 3.CM - Solve for x and y in the matrix equation 2AB=I,...Ch. 3.CM - Find ATA for the matrix A=[531246]. Show that this...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - Prob. 13CMCh. 3.CM - In Exercises 11-14, find the inverse of the matrix...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - In Exercises 15 and 16, use an inverse matrix to...Ch. 3.CM - Find the sequence of the elementary matrices whose...Ch. 3.CM - Find the determinant of the matrix....Ch. 3.CM - Find a |A|, b |B|, c AB and d |AB| then verify...Ch. 3.CM - Find a |A| and b |A1| A=[523104682]Ch. 3.CM - If |A|=7 and A is of order 4. Then find each...Ch. 3.CM - Use the adjoint of A=[151021102] to find A1Ch. 3.CM - Let X1,X2,X3 and b be the column matrices below....Ch. 3.CM - Use a system of linear equation to find the...Ch. 3.CM - Use a determinant to find an equation of the line...Ch. 3.CM - Use a determinant to find the area of the triangle...Ch. 3.CM - Determine the currents I1I2 and I3 for the...Ch. 3.CM - A manufacture produce three models of a product...Ch. 3.CM - Prob. 29CM
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- ************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forward
- Q.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
HOW TO FIND DETERMINANT OF 2X2 & 3X3 MATRICES?/MATRICES AND DETERMINANTS CLASS XII 12 CBSE; Author: Neha Agrawal Mathematically Inclined;https://www.youtube.com/watch?v=bnaKGsLYJvQ;License: Standard YouTube License, CC-BY
What are Determinants? Mathematics; Author: Edmerls;https://www.youtube.com/watch?v=v4_dxD4jpgM;License: Standard YouTube License, CC-BY