Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 7P
To determine
The time averaged power transferred to the speaker.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An audio amplifier, represented by the AC source and resistor in Figure P33.7, delivers to the speaker alternating voltage at audio frequencies. If the source voltage has an amplitude of 15.0 V, R= 8.20 ohms and the speaker is equivalent to a resistance of 10.4 ohms, what is the time-averaged power transferred to it?
power rating of 150 W, and bulb 3 has a 100-W rating. Find
(a) the rms current in each bulb and (b) the resistance of
each bulb. (c) What is the total resistance of the combina-
tion of the three lightbulbs?
max
R
5. In the AC circuit shown in Figure P32.3, R = 70.0 and the
output voltage of the AC source is AV sin wt. (a) If AV₂ =
0.250 AV for the first time at t = 0.010 0 s, what is the
angular frequency of the source? (b) What is the next value
of t for which AVR = 0.250 AVmax?
max
SECTION 32.3 Inductors in an AC Circuit
6. In a purely inductive AC circuit as shown in Figure P32.6,
100 V. (a) The maximum current is 7.50 A at
TAV
1
max
50.0 Hz. Calculate the inductance L. (b)
At
An 19.0-µF capacitor is connected across an AC source with Vmax = 80.0 V oscillating at 45.0 Hz. What is the maximum current in the capacitor?
Chapter 33 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 33.2 - Consider the voltage phasor in Figure 32.4, shown...Ch. 33.3 - Consider the AC circuit in Figure 32.8. The...Ch. 33.4 - Consider the AC circuit in Figure 32.11. The...Ch. 33.4 - Consider the AC circuit in Figure 32.12. The...Ch. 33.5 - Label each part of Figure 32.16, (a), (b), and...Ch. 33.6 - Prob. 33.6QQCh. 33.7 - Prob. 33.7QQCh. 33 - Prob. 1OQCh. 33 - Prob. 2OQCh. 33 - Prob. 3OQ
Ch. 33 - Prob. 4OQCh. 33 - Prob. 5OQCh. 33 - Prob. 6OQCh. 33 - Prob. 7OQCh. 33 - A resistor, a capacitor, and an inductor are...Ch. 33 - Under what conditions is the impedance of a series...Ch. 33 - Prob. 10OQCh. 33 - Prob. 11OQCh. 33 - Prob. 12OQCh. 33 - Prob. 13OQCh. 33 - Prob. 1CQCh. 33 - Prob. 2CQCh. 33 - Prob. 3CQCh. 33 - Prob. 4CQCh. 33 - Prob. 5CQCh. 33 - Prob. 6CQCh. 33 - Prob. 7CQCh. 33 - Prob. 8CQCh. 33 - Prob. 9CQCh. 33 - Prob. 10CQCh. 33 - Prob. 1PCh. 33 - (a) What is the resistance of a lightbulb that...Ch. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10PCh. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - An AC source has an output rms voltage of 78.0 V...Ch. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - An AC source with an output rms voltage of 86.0 V...Ch. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - What is the maximum current in a 2.20-F capacitor...Ch. 33 - Prob. 24PCh. 33 - In addition to phasor diagrams showing voltages...Ch. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - A 60.0-ft resistor is connected in series with a...Ch. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - A series RLC circuit has a resistance of 45.0 and...Ch. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - An AC voltage of the form v = 90.0 sin 350t, where...Ch. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - A series RLC circuit has components with the...Ch. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - A 10.0- resistor, 10.0-mH inductor, and 100-F...Ch. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - The primary coil of a transformer has N1 = 350...Ch. 33 - A transmission line that has a resistance per unit...Ch. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Consider the RC highpass filter circuit shown in...Ch. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57APCh. 33 - Prob. 58APCh. 33 - Prob. 59APCh. 33 - Prob. 60APCh. 33 - Prob. 61APCh. 33 - Prob. 62APCh. 33 - Prob. 63APCh. 33 - Prob. 64APCh. 33 - Prob. 65APCh. 33 - Prob. 66APCh. 33 - Prob. 67APCh. 33 - Prob. 68APCh. 33 - Prob. 69APCh. 33 - (a) Sketch a graph of the phase angle for an RLC...Ch. 33 - Prob. 71APCh. 33 - Prob. 72APCh. 33 - A series RLC circuit contains the following...Ch. 33 - Prob. 74APCh. 33 - Prob. 75APCh. 33 - A series RLC circuit in which R = l.00 , L = 1.00...Ch. 33 - Prob. 77CPCh. 33 - Prob. 78CPCh. 33 - Prob. 79CPCh. 33 - Figure P33.80a shows a parallel RLC circuit. The...Ch. 33 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An ac source of voltage amplitude 10 V delivers electric energy at a rate of 0.80 W when its current output is 2.5 A. What is the phase angle between the emf and the current?arrow_forwardThe RC high-pass filter shown in Figure P33.53 has a resistance R = 0.500 and a capacitance C = 613 F. What is the ratio of the amplitude of the output voltage to that of the input voltage for this filter for a source frequency of 600 Hz?arrow_forwardAn ac source of voltage amplitude 100 V and frequency 1.0 kHz drives an PLC series circuit with R=20, L = 4.0 mH, and C=50F . (a) Determine the rms current through the circuit, (b) What are the rms voltages across the three elements? (c) What is the phase angle between the emf and the current? (d) What is the power output of the source? (e) What is the power dissipated in the resistor?arrow_forward
- In the AC circuit shown in Figure P32.3, R = 70.0 and the output voltage of the AC source is Vmax sin t. (a) If VR = 0.250 Vmax for the first time at t = 0.0100 s, what is the angular frequency of the source? (b) What is the next value of t for which VR = 0.250 Vmax? Figure P32.6 Problem 3 and 5.arrow_forwardIn an RLC series circuit, the voltage amplitude and frequency of the source are 100 V and 500 Hz, respectively, an R = 5O0. L=0.20H, and C=2.0F . (a)What is the impedance of the circuit? (b) What is the amplitude of the current from the source? (C) If the emf of the source Is given by v(tt)=(100V)sin , how does the current vary with time? (d) Repeat the calculations with C changed to 0.20F .arrow_forwardThe emf of an ac source is given by v(t)=V0sint, where V0=100V and =200 . Find an expression that represents the output current of the source if it is connected across (a) a 20-pF capacitor, (b) a 20-mH inductor, and (c) a 50 resistor.arrow_forward
- A 700-pF capacitor is connected across an ac source with a voltage amplitude of 160 V and a frequency of 20 kHz. (a) Determine the capacitive reactance of the capacitor and the amplitude of the output current of the source. (b) If the frequency is changed to 60 Hz while keeping the voltage amplitude at 160 V, what are the capacitive reactance and the current amplitude?arrow_forwardA resistor and inductor are connected in series across an ac generator. The emf of the generator is given by v(t)=V0cost , where V0=120V and =120rad/s ; also, R=400 and L = 1.5 H. (a) What Is the impedance of the circuit? (b) What is the amplitude of the current through the resistor? (C) Write an expression for the current through the resistor. (d) Write expressions representing the voltages across the resistor and across the inductor.arrow_forwardAn inductor and a resistor are connected in series across an AC source as in Figure OQ33.1. Immediately after the switch is closed, which of the following statements is true? (a) The current in the circuit is V/R. (b) The voltage across the inductor is zero, (c) The current in the circuit is zero, (d) The voltage across the resistor is V (e) The voltage across the inductor is half its maximum value.arrow_forward
- A 30F capacitor is connected across a 60-Hz ac source whose voltage amplitude is 50 V. (a) What is the maximum charge on the capacitor? (b) What is the maximum current into the capacitor? (c) What is the phase relationship between the capacitor charge and the current in the circuit?arrow_forwardConsider the Filter circuit shown in Figure P33.56. (a) Show that the ratio of the amplitude of the output voltage to that of the input voltage is to that of input voltage is VoutVin=1/CR2+(1C)2 (b) What value does this ratio approach as the frequency decreases toward zero? (c) What value does this ratio approach as the frequency increases without limit? (d) At what frequency is the ratio equal to one-half?arrow_forwardA 7.0-mH induct is connected across a 60-Hz ac source whose voltage amplitude is 50 V. (a) What is the maximum current through the inductor? (b) What is the phase relationship between the current through and the potential difference across the inductor?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY