Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 33, Problem 75P
To determine
Estimate the size of water droplet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) A small light fixture on the bottom of a swimming pool is 0.92 m below the surface. The light emerging from the still
water forms a circle on the water surface. What is the diameter of this circle? (Give your answer, in m, to at least two
decimal places.)
Xm
(b) What If? If a 1.63 cm thick layer of oil (noil = 1.35) is spread uniformly over the surface of the water, what is the
diameter of the circle of light emerging from the swimming pool? (Give your answer, in m, to at least two decimal
places.)
X m
A point source emitting uniformly in all directions is
placed above a table-top at a distance of 0'50 m from ic.
The luminous flux of the source is 1570 lumen. Find the
illuminance at a small surface area of the table-top
(a) directly below the source and (b) at a distance of
0:80 m from the source.
QB& Avayot light is intended 1.60 anol l.ya
The andle of încidence is ug and the ray
originates in the medium of higher inded.
Com Aute the angle of re flectionž
Chapter 33 Solutions
Physics for Scientists and Engineers
Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - Prob. 4PCh. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8PCh. 33 - Prob. 9PCh. 33 - Prob. 10P
Ch. 33 - Prob. 11PCh. 33 - Prob. 12PCh. 33 - Prob. 13PCh. 33 - Prob. 14PCh. 33 - Prob. 15PCh. 33 - Prob. 16PCh. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - Prob. 21PCh. 33 - Prob. 22PCh. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Prob. 26PCh. 33 - Prob. 27PCh. 33 - Prob. 28PCh. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - Prob. 32PCh. 33 - Prob. 33PCh. 33 - Prob. 34PCh. 33 - Prob. 35PCh. 33 - Prob. 36PCh. 33 - Prob. 37PCh. 33 - Prob. 38PCh. 33 - Prob. 39PCh. 33 - Prob. 40PCh. 33 - Prob. 41PCh. 33 - Prob. 42PCh. 33 - Prob. 43PCh. 33 - Prob. 44PCh. 33 - Prob. 45PCh. 33 - Prob. 46PCh. 33 - Prob. 47PCh. 33 - Prob. 48PCh. 33 - Prob. 49PCh. 33 - Prob. 50PCh. 33 - Prob. 51PCh. 33 - Prob. 52PCh. 33 - Prob. 53PCh. 33 - Prob. 54PCh. 33 - Prob. 55PCh. 33 - Prob. 56PCh. 33 - Prob. 57PCh. 33 - Prob. 58PCh. 33 - Prob. 59PCh. 33 - Prob. 60PCh. 33 - Prob. 61PCh. 33 - Prob. 62PCh. 33 - Prob. 63PCh. 33 - Prob. 64PCh. 33 - Prob. 65PCh. 33 - Prob. 66PCh. 33 - Prob. 67PCh. 33 - Prob. 68PCh. 33 - Prob. 69PCh. 33 - Prob. 70PCh. 33 - Prob. 71PCh. 33 - Prob. 72PCh. 33 - Prob. 73PCh. 33 - Prob. 74PCh. 33 - Prob. 75PCh. 33 - Prob. 76PCh. 33 - Prob. 77PCh. 33 - Prob. 78PCh. 33 - Prob. 79PCh. 33 - Prob. 80PCh. 33 - Prob. 81PCh. 33 - Prob. 82PCh. 33 - Prob. 83PCh. 33 - Prob. 84PCh. 33 - Prob. 85PCh. 33 - Prob. 86PCh. 33 - Prob. 87P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the light source in the preceding problem is changed, the angular position of the third maximum is found to be 0.57°. What is the wavelength of light being used now?arrow_forwardSuppose you are looking down at a highway from a jetliner flying at an altitude of 6.0 km. How far apart must two cars be if you are able to distinguish them? Assume that =550 nm and that the diameter of your pupils is 4.0 mm.arrow_forwardA light ray of wavelength 461.9 nm emerges from a 2-mm circular aperture of a krypton ion laser. Due to diffraction, the beam expands as it moves out. How large is the central bright spot at (a) 1 m, (b) 1 km, (c) 1000 km, and (d) at the surface of the moon at a distance of 400,000 km from Earth.arrow_forward
- A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the telescope in opposite the normal direction and can then be projected onto a satellite or the moon. (a) If this is done with the Mount Wilson telescope, producing a 2.54-m-diameter beam of 633-nm light, what is the minimum angular spread of the beam? (b) Neglecting atmospheric effects, what is the size of the spot this beam would make on the moon, assuming a lunar distance of 3.84108 m?arrow_forwardThe structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardThe eyes of a person standing at the edge of a 1.2-m-deep swimming pool are 1.6 m above the surface of the water.Light coming from a silver dollar at the bottom of the pool entersthe person's eyes at an angle of 37° below the horizontal. Draw a picture of a light ray that leaves the dollar and enters the person'seyes and calculate the horizontal distance from the person to the dollar.arrow_forward
- The overall luminous efficiency of a 100 W electric lamp is 25 lumen/W. Assume that light is emitted by the lamp only in the forward half, and is uniformly distributed in all directions in this half. Calculate the luminous flux falling on a plane object of area 1 cm² placed at a distance of 50 cm from the lamp and perpendicular to the line joining the lamp and the object.arrow_forward(a) A small light fixture on the bottom of a swimming pool is 0.72 m below the surface. The light emerging from the still water forms a circle on the water surface. What is the diameter of this circle? (Give your answer, in m, to at least two decimal places.) (b) What If? If a 2.13 cm thick layer of oil (n = 1.35) is spread uniformly over the surface of the water, what is the diameter of the circle of light emerging from the swimming pool? (Give your answer, in m, to at least two decimal places.)arrow_forwardA circular area of radius 10 cm is placed at a distance of. 2'0 m from a point source, The source emits light uniformly in all directions. The line joining the source to the centre of the area is normal to the area. It is found that 20 x 10 *lumen of luminous flux is incident on the area. Calculate the total luminous flux emitted by the Source and the luminous intensity of the source along the axis of the area.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY