Concept explainers
(a)
To show: The condition for a constructive bright interference ring, thickness
(a)
Explanation of Solution
Introduction:
The given arrangement of Newton’s ring apparatus which consists of a plano-convex glass lens of radius of curvature R placed on a flat horizontal glass plate (Refer Figure 33-42) is similar to that of thin film arrangement with a difference that here the film is air of variable thickness
Therefore, the phase change takes place at the top of the horizontal glass plate is
Write the expression for the thickness of the thin glass plate in constructive interference.
Here,
Simplify the above expression and rearrange the terms for thickness.
where
Conclusion:
Thus, the condition for a constructive bright interference ring, thickness
(b)
To show: The relation between radius of the fringe
(b)
Explanation of Solution
Introduction:
The given arrangement of Newton’s ring apparatus which consists of a plano-convex glass lens of radius of curvature R placed on a flat horizontal glass plate (Refer Figure 33-42) is similar to that of thin film arrangement with a difference that here the film is air of variable thickness
Therefore, considering the geometry of plano-convex glass lens and the horizontal glass plate on which the lens arrangement is placed.
Write the expression for the radius of curvature.
Here
Simplify and expand the above expression as:
When
Write again the above expression forradius of curvature.
Simplify the above expression forthe radius of fringe.
Conclusion: Thus, for
(c)
The number of bright fringes obtained in the reflected light.
(c)
Explanation of Solution
Given:
The radius of curvature of the plano-convex lensis
The diameter of the lensis
The wavelength of the light used is
Formula used:
Write the expression for the radius of curvature.
Here
Simplify and expand the above expression as:
When
Write again the above expression forradius of curvature.
Simplify the above expression forthe radius of fringe.
Write the expression for the thickness of the thin glass plate in constructive interference.
Here
Simplify the above expression and rearrange the terms for thickness.
where
Substitute
Rearrange the above expression for the number of fringes.
Calculation:
Substitute
Conclusion:
Thus, there are
(d)
The diameter of the sixth bright fringe.
(d)
Explanation of Solution
Given:
The value of
The radius of curvature of the plano-convex lensis
The wavelength of the light used is
Formula used:
Write the expression for the radius of curvature.
Here
Simplify and expand the above expression as:
When
Write again the above expression forradius of curvature.
Simplify the above expression forthe radius of fringe.
Write the expression for the thickness of the thin glass plate in constructive interference.
Here
Simplify the above expression and rearrange the terms for thickness.
where
Write the expression for the diameter
Substitute
Substitute
Calculation:
Substitute
Conclusion:
Thus, the diameter of the sixth bright fringe is
(e)
The qualitative changes occur in the bright fringe pattern when air is replaced by the water between the two glass plates.
(e)
Explanation of Solution
Given:
The wavelength of the light used is
The refractive index of the glass plates,
Formula used:
Write the expression for wavelengthof the light in the film.
Rearrange the above expression for refractive index.
Calculation:
Substitute
Conclusion:
Thus, the number of bright fringe pattern increased by a factor of
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers
- A transparent film of thickness 250 nm and index of refraction of 1.40 is surrounded by air. What wavelength in a beam of white light at near-normal incidence to the film undergoes destructive interference when reflected?arrow_forwardA film of soapy water (n=1.33) on top of a plastic cutting board has a thickness of 233 nm. What color is most strongly reflected if it is illuminated perpendicular to its surface?arrow_forwardSuppose you have a lens system that is to be used primarily for 700-nm red light. What is the second thinnest coating of fluorite (magnesium fluoride) that would be nonreflective for this wavelength?arrow_forward
- A film of oil on water will appear dark when it is very thin, because the path length difference becomes small compared with the wavelength of light and there is a phase shift at the top surface. If it becomes dark when the path length difference is less than one-fourth the wavelength, what is the thickest the oil can be and appear dark at all visible wavelengths? Oil has an index of refraction of 1.40.arrow_forwardEight slits equally separated by 0.149 mm is uniformly illuminated by a monochromatic light at =523 nm. What is the intensity of a secondary maxima compared to that of the principal maxima?arrow_forwardTwo microscope slides made of glass are illuminated by monochromatic (=589nm) light incident perpendicularly. The top slide touches the bottom slide at one end and rests on a thin copper wire at the other end, forming a wedge of air. The diameter of the copper wire is 29.45 m . How many bright fringes are seen across these slides?arrow_forward
- Find the angle for the third-order maximum for 580-nm-wavelength yellow light falling on a difraction grating having 1500 lines per centimeter.arrow_forwardWhat is the wavelength of light falling on double slits separated by 2.00 m if the third-order maximum is at an angle of 60.0° ?arrow_forwardAn experimenter detects 251 fringes when the movable mirror in a Michelson interferometer is displaced. The light source used is a sodium lamp, wavelength 589 nm. By what distance did the movable mirror move?arrow_forward
- Into one arm of a Michelson interferometer, a plastic sheet of thickness 75 m is inserted, which causes a shift in the interference pattern by 86 fringes. The light source has wavelength of 610 nm in air. What is the index of refraction of this plastic?arrow_forwardA single slit of width 0.1 mm is illuminated by a mercury light of wavelength 576 nm. Find the intensity at a 10° angle to the axis in terms of the intensity of the central maximum.arrow_forwardA first-order Bragg reflection maximum is observed when a monochromatic X-ray falls on a crystal at a 32.3° angle to a reflecting plane. What is the wavelength of this X-ray?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College