College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 33, Problem 5PE
We ratio of the strong to the weak force and the ratio of the strong force to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A new type of force was discovered by physicists witl
the following expression:
a
Fnew = + Be* + 3x*
where alpha & beta are constants, and x is th
position. The expression above was obtained from
the interaction of a massless Higgs Boson (a type c
particle) and a black hole.
Quantum physicists then decides to design and buil.
a machine that is able to move the Higgs Boson from
X2 to x1. How much work should the machine do t
achieve this feat? (For simplicity, consider that ne
energy is lost in the process)
Solution
To determine the work done we apply the following
X;
W =
dx
Evaluating the above, we get
W =
for the limits from xj to xf
substituting x1 and x2 as the limits, the work done i
expressed as
W =
x1
x12 - x22 )
a and b please
The Schwarzschild radius RBH for an object of mass M is defined as
(See image.)
where c is the speed of light and G is the universal gravitational constant. RBH gives the radius of the event horizon of a black hole with mass M. In other words, it gives the radius to which some amount of mass M would need to be compressed in order to form a black hole.
1. The mass of the Sun is about 1.99 × 1030 kg. What would be the radius of a black hole with this mass?
2. The mass of Mars is about 6.42 × 1023 kg. What would be the radius of a black hole with this mass?
3. Suppose you want to make a black hole that is roughly the size of an atom (take RBH = 1.10 x 10-10 m). What would be the mass M of such a black hole?
Chapter 33 Solutions
College Physics
Ch. 33 - The total energy in the beam of an accelerator is...Ch. 33 - Synchrotron radiation takes energy from an...Ch. 33 - What two major limitations prevent us from...Ch. 33 - What are the advantages of collidingbeam...Ch. 33 - Large quanti?es of antimatter isolated from normal...Ch. 33 - Massless particles are not only neutral, they are...Ch. 33 - Massless particles must travel at the speed of...Ch. 33 - When a stat erupts in a supernova explosion, huge...Ch. 33 - Theorists have had spectacular success in...Ch. 33 - What lifetime do you expect for an antineutron...
Ch. 33 - Why does the meson have such a short lifetime...Ch. 33 - (a) Is a hadron always a baryon? (b) Is a baryon...Ch. 33 - Explain how conservation of baryon number is...Ch. 33 - The quark ?avor change it takes place in decay....Ch. 33 - Explain how the weak force can change strangeness...Ch. 33 - Beta decay is caused by the weak force, as are all...Ch. 33 - Why is it easier to see the properties of the c,...Ch. 33 - How can quarks, which are fermions, combine to...Ch. 33 - What evidence is cited is support the contention...Ch. 33 - Discuss how we know that (mesons are not...Ch. 33 - An antibaryon has three antiquarks with colors...Ch. 33 - Suppose leptons are created in a reaction. Does...Ch. 33 - How can the lifetime of a particle indicate that...Ch. 33 - (a) Do all particles having strangeness also have...Ch. 33 - The sigmazero particle decays mostly via the...Ch. 33 - What do the quark compositions and other quantum...Ch. 33 - Discuss the similarities and differences between...Ch. 33 - Identity evidence for electroweak unification.Ch. 33 - The quarks in a particle are con?ned, meaning...Ch. 33 - If a GUT is proven, and the four forces are...Ch. 33 - If the Higgs boson is discovered and found to have...Ch. 33 - Gluons and the photon are massless. Does this...Ch. 33 - A virtual particle having an approximate mass of...Ch. 33 - Calculate the mass in of a virtual carrier...Ch. 33 - Another component of the strong nuclear force is...Ch. 33 - (a) Find the ratio of the strengths the weak and...Ch. 33 - We ratio of the strong to the weak force and the...Ch. 33 - At full energy, protons in the 2.00kmdiameter...Ch. 33 - Suppose a W created in a bubble chamber lives for...Ch. 33 - What length track does a (+ traveling at 0.100 c...Ch. 33 - The 3.20kmlong SLAC produces a beam of 50.0GeV...Ch. 33 - Because of energy loss due to synchrotron...Ch. 33 - A proton and an antiproton collide headon, with...Ch. 33 - When an electron and positron collide at the SLAC...Ch. 33 - The is its own antiparticle and decays in the...Ch. 33 - The primary decay mode for the negative pion is...Ch. 33 - The mass of a theoretical particle that may be...Ch. 33 - The decay mode of the negative muon is (a) Find...Ch. 33 - The decay mode of the positive tau is (a) What...Ch. 33 - The principal decay mode at the sigma zero is (a)...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) What is the uncertainty in the energy released...Ch. 33 - (a) Verify from its quark composition that the...Ch. 33 - Accelerators such as the Triangle Universities...Ch. 33 - The reaction (described in the preceding problem)...Ch. 33 - One of the decay modes of the omega minus is (a)...Ch. 33 - Repeat the previous problem for the decay modeCh. 33 - One decay mode for the etazero meson is (a) Find...Ch. 33 - One decay mode for the etazero meson is (a) Write...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - Is the decay possible considering the appropriate...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - (a) Is the decay possible considering the...Ch. 33 - The only combination of quark colors that produces...Ch. 33 - (a) Three quarks form a baryon. How many...Ch. 33 - (a) Show that the conjectured decay of the proton,...Ch. 33 - Verify the quantum numbers given for the + in...Ch. 33 - Verify the quantum numbers given for the proton...Ch. 33 - (a) How much energy would be released if the...Ch. 33 - (a) Find the charge, baryon number, strangeness,...Ch. 33 - There are particles called Dmesons. One of them is...Ch. 33 - There are particles called bottom mesons or...Ch. 33 - (a) What particle has the quark composition u-u-d?...Ch. 33 - (a) Show than all combinations of three quarks...Ch. 33 - Integrated Concepts The intensity of cosmic ray...Ch. 33 - Integrated Concepts Assuming conservation of...Ch. 33 - Integrated Concepts What is the wavelength of a...Ch. 33 - Integrated Concepts Calculate the relativistic...Ch. 33 - Integrated Concepts The primary decay mode for the...Ch. 33 - Integrated Concepts Plans for an accelerator that...Ch. 33 - Integrated Concepts Suppose you are designing a...Ch. 33 - Integrated Concepts In supernovas, neutrinos are...Ch. 33 - Construct Your Own Problem Consider an...Ch. 33 - Construct Your Own Problem Consider a detector...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
Identify me theme or themes exemplified by (a) the sharp quills of a porcupine (b) the development of a multice...
Campbell Biology in Focus (2nd Edition)
Mendel crossed peas having round green seeds with peas having wrinkled yellow seeds. All F1 plants had seeds th...
Concepts of Genetics (12th Edition)
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
Glycine has pK2 values of 2.34 and 9.60. At what pH does glycine exist in the forms shown?
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- the average blood velocity is 20.0 cm/s? 3. Estimate magnetic field strength 1 mm away from the axon if magnitude of axon current is I = 4.1×10 A. Suppose, that axon is long straight current caring wire.arrow_forwardA new type of force was discovered by physicists with the following expression:Fnew = a/x +Be^x+3x^4 where alpha & beta are constants, and x is the position. The expression above was obtained from the interaction of a massless Higgs Boson (a type of particle) and a black hole quantum physicists then decides to design and build a machine that is able to move the Higgs Boson from x2 to x1. How much work should the machine do to achieve this feat? (For simplicity, consider that no energy is lost in the process) to determine the work done we apply the following and make sure to follow the instructions.arrow_forwardTwo 0.60-kgkg basketballs, each with a radius of 19 cmcm , are just touching a) How much energy is required to change the separation between the centers of the basketballs to 1.0 mm ? (Ignore any other gravitational interactions.) b) How much energy is required to change the separation between the centers of the basketballs to 13 mm ? (Ignore any other gravitational interactions.)arrow_forward
- The kinetic energy of the ejecta from a supernova explosion is about 10^44 joules. Use the formula for kinetic energy to determine the typical speed at which matter is ejected from a supernova with a mass of 10 Msun. Compare that speed with the Sunʹs orbital speed around our galaxy. Based on your comparison, do you think the galaxyʹs gravity would be strong enough to retain the supernova debris if there were no interstellar medium to slow it down? Explain.arrow_forwardThis would be all of g. how do you get just the z component of the gravitational fieldarrow_forwardThe radius Rh of a black hole is the radius of a mathematicalsphere, called the event horizon, that is centered on the blackhole. Information from events inside the event horizon cannotreach the outside world. According to Einstein’s general theory ofrelativity, Rh = 2GM/c2, where M is the mass of the black hole andc is the speed of light.Suppose that you wish to study a black hole near it, at a radialdistance of 50Rh. However, you do not want the difference in gravitationalacceleration between your feet and your head to exceed10 m/s2 when you are feet down (or head down) toward the blackhole. (a) As a multiple of our Sun’s mass MS, approximately what isthe limit to the mass of the black hole you can tolerate at the givenradial distance? (You need to estimate your height.) (b) Is the limitan upper limit (you can tolerate smaller masses) or a lower limit(you can tolerate larger masses)?arrow_forward
- Lorentz Force is given by F = qE + q v, × B Given to vector, v, = ((0) î + (8) ĵ + (0) k) × 10° m/s and B ((-4) î + (5) ĵ + (5) k) Tesla, If the charge is given by q = 24 nC and E = 0 Then, Find the Force F. x component Give your answer up to at least three significance digits. N y component Give your answer up to at least three significance digits. z component Give your answer up to at least three significance digits.arrow_forwardThis is a mathematical problem by converting the distance from the sun to earth then using what ever is given!arrow_forwardCosmologists have speculated that black holes the size of a proton could have formed during the early days of the Big Bang when the universe began. If we take the diameter of a proton to be 1.0 × 10-¹5 m, what would be the mass of a mini black hole?arrow_forward
- Solve it correctly please. I will rate accordinglyarrow_forwardQUESTION 2: Apply the energy interaction model to the two-masses-over-a-pulley situation. Model this system as if the pulley is massless and frictionless, so you won't have to worry about energy systems associated with the pulley system. Take the initial state to be you just release the masses (what is vi? what is delta-v?) Take the final state to be when the masses have a distance d and have speed but before they hit anything or out of string. (since d denotes a distance, it is a positive number: delta-y = +/- d, as appropriate) 2. when you substitute algebraic expressions for changes in individual energy systems in the algebraic representations of your particular Energy-Interaction Models, you will find the symbols m, M, g, v, and d useful. Watch your "minus signs"!arrow_forwardthe black holė, assun around it. A [ans: 4.5 × 1039 kg] Figure 5 2. Mars orbits the Sun in a nearly circular orbit of radius 2.28 × 10" m. The mass of Mars is 6.42 × 1023 kg. Mars experiences a gravitational force from the Sun of magnitude 1.63 × 1021 N. Calculate the speed of Mars and the period of revolution for Mars in terms of Earth years. A [ans: 2.41 × 10ª m/s; 1.90 Earth years] 3. Calculate the speed of a satellite i 6774656902-5 MUCCON N) 16 x10 DVANCED D.A.L. EL-531XT OFF OME D/NO CA nd F MODE STAT VAR INS ALPHA SET UP DEL RESET O pNOT sin AND cos OR tan1XOR DRG XNOR sin dR COS tan DRG EX log in. +DEG M. abc dx D'M'S RCL STO (x,y) DATA CD. -re -xy oy WOM a y q ( 8 6 ) ncr nPr XS +HEX C I NI8 + 5 4. 9 A PENarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning