
(a)
The wavelength of the wave.
(a)

Answer to Problem 51CP
The wavelength of the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the wavelength is,
Here,
Substitute
Conclusion:
Therefore, the wavelength of the wave is
(b)
The time period of the wave.
(b)

Answer to Problem 51CP
The time period of the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the time period is,
Substitute
Conclusion:
Therefore, the time period of the wave is
(c)
The maximum value of the magnetic field.
(c)

Answer to Problem 51CP
The maximum value of the magnetic field is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the magnitude of the magnetic field is,
Here,
Substitute
Conclusion:
Therefore, the maximum value of the magnetic field is
(d)
The expression for electric field and the magnetic field.
(d)

Answer to Problem 51CP
The expression for electric field is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the angular frequency is,
Here,
Substitute the
The formula to calculate the angular constant is,
Here,
Substitute the
The formula to calculate the electric field is,
Substitute
The electric field is in the same direction of wave propagation.
The formula to calculate the magnetic field is,
Substitute
The direction of propagation of the magnetic field is perpendicular to that of the electric field.
Conclusion:
Therefore, the expression for electric field is
(e)
The average power per unit area the wave carries.
(e)

Answer to Problem 51CP
The average power per unit area the wave carries is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average power per unit area is,
Here,
Substitute
Conclusion:
Therefore, the average power per unit area the wave carries is
(f)
The average energy density in the
(f)

Answer to Problem 51CP
The average energy density in the radiation is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average energy density is,
Substitute
Conclusion:
Therefore, the average energy density in the radiation is
(g)
The radiation pressure exerted by the wave.
(g)

Answer to Problem 51CP
The radiation pressure exerted by the wave is
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the radiation pressure is,
Substitute
Conclusion:
Therefore, the radiation pressure exerted by the wave is
Want to see more full solutions like this?
Chapter 33 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





