(a)
The wavelength of the wave.
(a)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the wavelength is,
Here,
Substitute
Conclusion:
Therefore, the wavelength of the wave is
(b)
The time period of the wave.
(b)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the time period is,
Substitute
Conclusion:
Therefore, the time period of the wave is
(c)
The maximum value of the magnetic field.
(c)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the magnitude of the magnetic field is,
Here,
Substitute
Conclusion:
Therefore, the maximum value of the magnetic field is
(d)
The expression for electric field and the magnetic field.
(d)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the angular frequency is,
Here,
Substitute the
The formula to calculate the angular constant is,
Here,
Substitute the
The formula to calculate the electric field is,
Substitute
The electric field is in the same direction of wave propagation.
The formula to calculate the magnetic field is,
Substitute
The direction of propagation of the magnetic field is perpendicular to that of the electric field.
Conclusion:
Therefore, the expression for electric field is
(e)
The average power per unit area the wave carries.
(e)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average power per unit area is,
Here,
Substitute
Conclusion:
Therefore, the average power per unit area the wave carries is
(f)
The average energy density in the radiation .
(f)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the average energy density is,
Substitute
Conclusion:
Therefore, the average energy density in the radiation is
(g)
The radiation pressure exerted by the wave.
(g)
Answer to Problem 51CP
Explanation of Solution
Given info: The frequency of the wave is
The formula to calculate the radiation pressure is,
Substitute
Conclusion:
Therefore, the radiation pressure exerted by the wave is
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning