Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 33, Problem 44AP
(a)
To determine
The electric field in the empty space as a function of radial distance r
.
(b)
To determine
The electric field in the empty space as a function of radial distance r
when the power is 25.0 W
.
(c)
To determine
The distance at which the amplitude of electric field is 3.00 MV / m
.
(d)
To determine
The change in the field amplitude when the distance from the source doubles.
(e)
To determine
The comparison of the behavior of filed when in vacuum as compared to that of closed surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A microscopic spherical dust particle of radius r and mass m is moving in outer space at a constant speed v. A wave of light strikes it from the opposite direction of its motion and gets absorbed.
Assuming the particle decelerates uniformly to zero speed in time t, write an equation for the average electric field amplitude in the light.
Consider a monochromatic electromagnetic
plane wave propagating in the x direction. At
a particular point in space, the magnitude of
the electric field has an instantaneous value
of 15.4 V/m in the positive y-direction. The
wave is traveling in the positive x-direction.
y
E
wave propagation
X
The speed of light is 2.99792 × 108 m/s, the
permeability of free space is 47 x 10-7 T.N/A
and the permittivity of free space 8.85419 ×
10-¹2 C²/N. m².
Compute the instantaneous magnitude of
the magnetic field at the same point and time.
Answer in units of T.
What is the instantaneous magnitude of the
The electric field intensity in the region 0 <.x < 5, 0
Chapter 33 Solutions
Physics for Scientists and Engineers
Ch. 33.1 - Prob. 33.1QQCh. 33.3 - What is the phase difference between the...Ch. 33.3 - Prob. 33.3QQCh. 33.5 - Prob. 33.4QQCh. 33.6 - If the antenna in Figure 33.11 represents the...Ch. 33.7 - Prob. 33.6QQCh. 33.7 - A radio wave of frequency on the order of 105 Hz...Ch. 33 - Prob. 1PCh. 33 - Prob. 2PCh. 33 - A proton moves through a region containing a...
Ch. 33 - A diathermy machine, used in physiotherapy,...Ch. 33 - The distance to the North Star, Polaris, is...Ch. 33 - A radar pulse returns to the transmitterreceiver...Ch. 33 - The speed of an electromagnetic wave traveling in...Ch. 33 - You are working for SETI, the Search for...Ch. 33 - Review. A microwave oven is powered by a...Ch. 33 - Verify by substitution that the following...Ch. 33 - Why is the following situation impossible? An...Ch. 33 - At what distance from the Sun is the intensity of...Ch. 33 - If the intensity of sunlight at the Earths surface...Ch. 33 - Prob. 14PCh. 33 - High-power lasers in factories are used to cut...Ch. 33 - Review. Model the electromagnetic wave in a...Ch. 33 - Prob. 17PCh. 33 - Prob. 18PCh. 33 - Prob. 19PCh. 33 - Prob. 20PCh. 33 - A 25.0-mW laser beam of diameter 2.00 mm is...Ch. 33 - The intensity of sunlight at the Earths distance...Ch. 33 - Prob. 23PCh. 33 - Prob. 24PCh. 33 - Prob. 25PCh. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Extremely low-frequency (ELF) waves that can...Ch. 33 - A large, flat sheet carries a uniformly...Ch. 33 - Prob. 29PCh. 33 - Prob. 30PCh. 33 - Prob. 31PCh. 33 - An important news announcement is transmitted by...Ch. 33 - Assume the intensity of solar radiation incident...Ch. 33 - Classify waves with frequencies of 2 Hz, 2 kHz, 2...Ch. 33 - The eye is most sensitive to light having a...Ch. 33 - Prob. 36APCh. 33 - You are working as a radio technician. One day,...Ch. 33 - One goal of the Russian space program is to...Ch. 33 - The intensity of solar radiation at the top of the...Ch. 33 - The Earth reflects approximately 38.0% of the...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Consider a small, spherical particle of radius r...Ch. 33 - Review. A 1.00-m-diameter circular mirror focuses...Ch. 33 - Prob. 44APCh. 33 - Prob. 45APCh. 33 - You may wish to review Sections 16.4 and 16.8 on...Ch. 33 - You are working at NASA, in a division that is...Ch. 33 - Prob. 48APCh. 33 - Prob. 49APCh. 33 - Prob. 50CPCh. 33 - Prob. 51CP
Knowledge Booster
Similar questions
- A plane electromagnetic wave travels northward. At one instant, its electric field has a magnitude of 6.0 V/m and points eastward. What are the magnitude and direction of the magnetic field at this instant?arrow_forwardIf the electric field of an electromagnetic wave is oscillating along the z-axis and the magnetic field is oscillating along the x-axis, in what possible direction is the wave traveling?arrow_forwardWhat is the intensity of an electromagnetic wave with a peak electric field strength of 125 Vim?arrow_forward
- A long, straight, cylindrical conductor contains a cylindrical cavity whose axis is displaced by n from the axis of the conductor, as shown in the accompanying figure. The current density in the conductor is given by J=J0k, where J0 is a constant and k is along the axis of the conductor. Calculate the magnetic field at an arbitrary point P in the cavity by superimposing the field of a solid cylindrical conductor with radius R1and current density Jonto the field of a solid cylindrical conductor with radius R2and current density J . Then use the fact that the appropriate azimuthal unit vectors can be expressed as 1=kr1and 2=kr2 to show that everywhere inside the cavity the magnetic field is given by the constant B=120J0ka , where a=r1r2 and r1=r1r1 is the position of P relative to the center of the conductor and r2=r2r2 is the position of P relative to the center of the cavity.arrow_forwardA 18.0-mW helium–neon laser emits a beam of circular cross section with a diameter of 1.75 mm. (a) Find the maximum electric field in the beam. kN/C(b) What total energy is contained in a 1.00-m length of the beam? pJ(c) Find the momentum carried by a 1.00-m length of the beam. kg · m/sarrow_forward(a) The electric field of an electromagnetic wave propagating in free space is described by the equation E(z, t) = Eo[Êsin(kz – wt) + ŷcos(kz – wt)] where x and y are unit vectors in the x- and y-direction, respectively. What is this wave's direction of propagation? What is the polarization of the wave? (b) State and prove the boundary conditions satisfied by the magnetic intensity H and the magnetic field B at the boundary between two media with different magnetic properties. (c) Show that tan 01 tan 02 where 0, and 0 , are incident and refraction angles.arrow_forward
- An electromagnetic wave with frequency 65.0 Hz travels in an insulating magnetic material that has dielectric constant 3.64 and relative permeability 5.18 at this frequency. The electric field has amplitude 7.20 x 10-3 V/m. (a) What is the speed of propagation of the wave? (b) What is the wavelength of the wave? (c) What is the amplitude of the magnetic field?arrow_forwardYou set up electromagnetic standing waves in a cavity that has two parallel conducting walls, one at x = 0 and one at x = 4.56 cm. Find (a) the three lowest standing-wave frequencies and their corresponding wavelengths, and (b) the positions of the nodal planes of the electric field for each of these frequencies.arrow_forwardA 14.0-mW helium-neon laser emits a beam of circular cross section with a diameter of 2.85 mm. (a) Find the maximum electric field in the beam. kN/C (b) What total energy is contained in a 1.00-m length of the beam? pJ (c) Find the momentum carried by a 1.00-m length of the beam. kg. m/sarrow_forward
- An electromagnetic plane wave traveling in a vacuum has its electric field given by Ex = Ey = 0 and Ez = 2000 V/m cos(10 m-1 x - wt). a) What is the frequency of the wave? b) What is the direction of propagation? c) What is the equation of the B field?arrow_forwardWhat is the maximum value of the electric field in an electromagnetic whose maximum intensity is 7.55 W/m²?arrow_forwardShow that the energy flow due to a plane electromagnetic wave propagating along z-direction in a dielectric medium is given by 7 ωμ 2 E² cos² (kz - wt), where k and w are the propagation vector and angular frequency, E, is electric field amplitude, u is the relative permeability of the medium.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill