
Solve part a of Prob. 3.78, assuming that two 15-N vertical forces have been added, one acting upward at A and the other downward at C.
(a)

The net couple acting on the rectangular co-ordinates.
Answer to Problem 3.79P
The net couple acting on the rectangular co-ordinates is
Explanation of Solution
Write the equation of the couple acting at the reactangular side
Here, moment of couple at the point
Substitute
Write the equation of the couple acting at the reactangular side
Here, moment of couple at the point
Substitute
Write the equation of the couple vector acting at the reactangular co-ordinates at point
Here, the projection angle is
Substitute
Write the equation of the couple vector acting at the reactangular co-ordinates at point
Substitute
Sketch the moment of additional couple is added to the moment about
Write the equation of the additional couple vector acting at the point
Here, the additional couple vector formed by the force at the point
The negative sign of the force shows that the force acting downward direction.
Substitute
Conclusion:
Write the equation for the net couple acting on the rectangular co-ordinates.
Adding the equations (I), (II), and (III) to obtained the net couple.
Write the equation for the magnitude of net couple.
Therefore, the net couple acting on the rectangular co-ordinates is
(b)

The direction of the two forces acting on the point
Answer to Problem 3.79P
The direction of the two forces acting on the point
Explanation of Solution
Write the equation for direction of the moment of couple formed by the forces at point
Here, the angle formed by the moment of couple due to the force located at the point
Rewrite the equation for
Write the equation for direction of the moment of couple formed by the forces at point
Here, the angle formed by the moment of couple due to the force located at the point
Rewrite the equation for
Write the equation for direction of the moment of couple formed by the forces at point
Here, the angle formed by the moment of couple due to the force located at the point
Rewrite the equation for
Conclusion:
Substitute
Substitute
Substitute
Therefore, the direction of the two forces acting on the point
Want to see more full solutions like this?
Chapter 3 Solutions
EBK VECTOR MECHANICS FOR ENGINEERS: STA
- This is an exam review question. The answer is Pmin = 622.9 lb but whyarrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Please do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardThis is an old practice exam. Fce = 110lb and FBCD = 62 lb but whyarrow_forwardQuiz/An eccentrically loaded bracket is welded to the support as shown in Figure below. The load is static. The weld size for weld w1 is h1 = 4mm, for w2 h2 = 6mm, and for w3 is h3 =6.5 mm. Determine the safety factor (S.f) for the welds. F=29 kN. Use an AWS Electrode type (E100xx). 163 mm S 133 mm 140 mm Please solve the question above I solved the question but I'm sure the answer is wrong the link : https://drive.google.com/file/d/1w5UD2EPDiaKSx3W33aj Rv0olChuXtrQx/view?usp=sharingarrow_forward
- Q2: (15 Marks) A water-LiBr vapor absorption system incorporates a heat exchanger as shown in the figure. The temperatures of the evaporator, the absorber, the condenser, and the generator are 10°C, 25°C, 40°C, and 100°C respectively. The strong liquid leaving the pump is heated to 50°C in the heat exchanger. The refrigerant flow rate through the condenser is 0.12 kg/s. Calculate (i) the heat rejected in the absorber, and (ii) the COP of the cycle. Yo 8 XE-V lo 9 Pc 7 condenser 5 Qgen PG 100 Qabs Pe evaporator PRV 6 PA 10 3 generator heat exchanger 2 pump 185 absorberarrow_forwardQ5:(? Design the duct system of the figure below by using the balanced pressure method. The velocity in the duct attached to the AHU must not exceed 5m/s. The pressure loss for each diffuser is equal to 10Pa. 100CFM 100CFM 100CFM ☑ ☑ 40m AHU -16m- 8m- -12m- 57m 250CFM 40m -14m- 26m 36m ☑ 250CFMarrow_forwardA mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forward
- my ID# 016948724. Please solve this problem step by steparrow_forwardMy ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forwardMy ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forward
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
