
Find the magnitude of the couple (M) and direction of its axis after replacing two couples in to single equivalent couple.

Answer to Problem 3.79P
The magnitude of the couple (M) and direction of its axis
Explanation of Solution
Given information:
The two vertical forces
The inclined force acting at point B
The inclined force acting at point C
The force acting at the point E
The force acting at the point D
The height between point C and F (CF) is 120 mm.
The height between point F and A (FA) is 120 mm.
The horizontal distance between point E and D (ED) is 192 mm.
The height between point E and B (EB) is 144 mm.
The distance between point C and D (CD) is 160 mm.
Calculation:
Replace the couple in the ABCD plane with two couple’s P and Q.
Show the couple ABCD by replacing with two couple’s P and Q as Figure 1.
Calculate the distance CG using the formula:
Use Pythagoras theorem,
Substitute 160 mm for CD and 120 mm for CF.
Calculate the force (P) acting at the point B using the formula:
Substitute 50 N for
Calculate the force (Q) acting at the point C using the formula:
Substitute 50 N for
Calculate the angle
Substitute 144 mm for EB and 192 mm for ED.
Calculate the couple vector
Substitute 40 N for P, 120 mm for CF, 120 mm for FA, 30 N for Q, 160 mm for CD.
Write the couple vector
Substitute
Calculate the couple vector
Substitute 12.5 N for
Write the couple vector
Calculate the position vector of BC
Substitute 160 mm for CD, 144 mm for EB and 192 mm for ED.
Calculate the couple vector
Substitute
Calculate magnitude of the couple (M) using the relation:
Substitute
Calculate the direction of axis along x direction
Substitute
Calculate the direction of axis along y direction
Substitute
Calculate the direction of axis along z direction
Substitute
Therefore, the magnitude of the couple (M) and direction of its axis
Want to see more full solutions like this?
Chapter 3 Solutions
EBK VECTOR MECHANICS FOR ENGINEERS: STA
- ###arrow_forwardFind the closed loop transfer function and then plot the step response for diFerentvalues of K in MATLAB. Show step response plot for different values of K. Auto Controls Show solution for transform function and provide matlab code (use k(i) for for loop NO COPIED SOLUTIONSarrow_forwardThis is an old practice exam. The answer is Ta-a = 4.615 MPa max = 14.20 MPa Su = 31.24 MPa Sus = 10.15 MPa but why?arrow_forward
- This is an old practice exam. The answer is dmin = 42.33 mm but how?arrow_forward5.) 12.124* - Block B (WB = 12 lb) rests as shown on the upper surface of wedge A (W₁ = 30 lb). The angle of the slope is 0 = 30°. Neglect friction, and find immediately after the system is released from rest (a) the acceleration of a (a) and (b) the acceleration of B relative to A (a B/A).arrow_forwardWhat is the Maximum Bending Moment induced in the following Beam, if? P = 19 KN L = 11 m Ensure that your answer is in kN.m. لا اللهarrow_forward
- What is the Magnitude of the Maximum Stress in the beam below if? W。 = 6 kN/m L = 9 m Beam width, b = 226 mm Beam Height, h = 273 mm Give your answer in MPa. A 233 B 4|3 Woarrow_forwardWhat is the Reaction Force induced in the following system at point A, if? W = 12 kN/m P = 35 kN L = 11 m Ensure that your answer is in kN. ولها A 4/2 ↓↓ P Barrow_forward180- Dimensions in mm 100 100 D E Steel B Brass 60 kN 40 kN 40-mm diam. 30-mm diam. PROBLEM 2.40 Solve Prob. 2.39, assuming that rod AC is made of brass and rod CE is made of steel. PROBLEM 2.39 Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that E = 200 GPa and E, 105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C. = R = 45.5 kN ← Aarrow_forward
- Dimensions in mm 100 100 -180- -120-+- C D Steel B Brass 60 kN 40 kN 40-mm diam. 30-mm diam. E PROBLEM 2.39 Two cylindrical rods, one of steel and the other of brass, are joined at Cand restrained by rigid supports at A and E. For the loading shown and knowing that E = 200 GPa and E₁ = 105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C.arrow_forward(read image) (Answer: vE = 0.514 m/s)arrow_forward0.36 m Problem 2.27 P=5kN D Each of the links AB and CD is made of aluminum (E=75 GPa) and has a cross-sectional area of 125 mm². Knowing that they support the rigid member BC, determine the deflection of point E. B E 0.44 m 0.20 marrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





