(a)
The moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples.
(a)
Answer to Problem 3.71P
The moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Draw the free body diagram of the lever as in Figure (1).
Calculate the vertical height of BC
Substitute 270 mm for y and
Calculate the horizontal height of BC
Substitute 270 mm for y and
Calculate the horizontal reaction at C
Substitute 40 N for
Calculate the vertical reaction at C
Substitute 40 N for
Find the moment of the couple (M):
Take the moment about B.
Substitute 0.22117 m for
Thus, the moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples is
(b)
The moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces.
(b)
Answer to Problem 3.71P
The moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Calculate the distance (d) between the two forces using the relation:
Substitute 270 mm for y,
Calculate the moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces using the relation:
Substitute 40 N for F and 0.154866 m for d.
Thus, the moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces is
(c)
The moment of the couple (M) formed by summing the moments of two forces about point A.
(c)
Answer to Problem 3.71P
The moment of the couple (M) formed by summing the moments of two forces about point A is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Calculate the position vector of from point B to point A
Substitute 390 mm for x and
Calculate the force at B by resolving in horizontal and vertical direction using the relation:
Substitute 40 N for
Calculate the position vector of from point C to point A
Substitute 390 mm for x, 270 mm for y and
Calculate the force at C by resolving in horizontal and vertical direction using the relation:
Substitute 40 N for
Calculate the moment of the couple (M) formed by summing the moments of two forces about point A using the relation:
Take the moment about A.
Substitute
Thus, the moment of the couple (M) formed by summing the moments of two forces about point A is
Want to see more full solutions like this?
Chapter 3 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
- A lift with a counterweight is attached to the ceiling. The attachment is with 6 stainless and oiled screws. What screw size is required? What tightening torque? - The lift weighs 500 kg and can carry 800 kg. - Counterweight weight 600 kg - Durability class 12.8 = 960 MPa- Safety factor ns=5+-Sr/Fm= 0.29Gr =0.55arrow_forwardKnowing that a force P of magnitude 750 N is applied to the pedal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 300 mm- mm A B P 125 mm 5 mm C Darrow_forwardAssume the B frame differs from the N frame through a 90 degree rotation about the second N base vector. The corresponding DCM description is: 1 2 3 4 5 6 9 # adjust the return matrix values as needed def result(): dcm = [0, 0, 0, 0, 0, 0, 0, 0, 0] return dcmarrow_forward
- Find the reaction at A and B The other response I got was not too accurate,I need expert solved answer, don't use Artificial intelligence or screen shot it solvingarrow_forwardNo chatgpt plsarrow_forwardSolve for the reaction of all the forces Don't use artificial intelligence or screen shot it, only expert should solvearrow_forward
- No chatgpt plsarrow_forwardA six cylinder petrol engine has a compression ratio of 5:1. The clearance volume of each cylinder is 110CC. It operates on the four-stroke constant volume cycle and the indicated efficiency ratio referred to air standard efficiency is 0.56. At the speed of 2400 rpm. 44000KJ/kg. Determine the consumes 10kg of fuel per hour. The calorific value of fuel average indicated mean effective pressure.arrow_forwardThe members of a truss are connected to the gusset plate as shown in (Figure 1). The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F= 7.03 Submit ? kN Previous Answers Request Answer × Incorrect; Try Again; 21 attempts remaining ▾ Part B Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. Figure T₂ = 7.03 C T2 |? KN Submit Previous Answers Request Answer × Incorrect; Try Again; 23 attempts remaining Provide Feedbackarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY