
(a)
The moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples.
(a)

Answer to Problem 3.71P
The moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Draw the free body diagram of the lever as in Figure (1).
Calculate the vertical height of BC
Substitute 270 mm for y and
Calculate the horizontal height of BC
Substitute 270 mm for y and
Calculate the horizontal reaction at C
Substitute 40 N for
Calculate the vertical reaction at C
Substitute 40 N for
Find the moment of the couple (M):
Take the moment about B.
Substitute 0.22117 m for
Thus, the moment of the couple (M) formed by two forces by resolving each force into horizontal and vertical components and adding the moments of the two resulting couples is
(b)
The moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces.
(b)

Answer to Problem 3.71P
The moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Calculate the distance (d) between the two forces using the relation:
Substitute 270 mm for y,
Calculate the moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces using the relation:
Substitute 40 N for F and 0.154866 m for d.
Thus, the moment of the couple (M) formed by two forces by using the perpendicular distance between the two forces is
(c)
The moment of the couple (M) formed by summing the moments of two forces about point A.
(c)

Answer to Problem 3.71P
The moment of the couple (M) formed by summing the moments of two forces about point A is
Explanation of Solution
Given information:
The applied force at point B
The applied force at point C
The length of AB (x) is 390 mm.
The length of BC (y) is 270 mm.
The angle of the inclined lever
The angle of the force acting at point C
Calculation:
Calculate the position vector of from point B to point A
Substitute 390 mm for x and
Calculate the force at B by resolving in horizontal and vertical direction using the relation:
Substitute 40 N for
Calculate the position vector of from point C to point A
Substitute 390 mm for x, 270 mm for y and
Calculate the force at C by resolving in horizontal and vertical direction using the relation:
Substitute 40 N for
Calculate the moment of the couple (M) formed by summing the moments of two forces about point A using the relation:
Take the moment about A.
Substitute
Thus, the moment of the couple (M) formed by summing the moments of two forces about point A is
Want to see more full solutions like this?
Chapter 3 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- 3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward500 Q3: The attachment shown in Fig.3 is made of 1040 HR. The static force is 30 kN. Specify the weldment (give the pattern, electrode number, type of weld, length of weld, and leg size). Fig. 3 All dimension in mm 30 kN 100 (10 Marks)arrow_forward
- (read image) (answer given)arrow_forwardA cylinder and a disk are used as pulleys, as shown in the figure. Using the data given in the figure, if a body of mass m = 3 kg is released from rest after falling a height h 1.5 m, find: a) The velocity of the body. b) The angular velocity of the disk. c) The number of revolutions the cylinder has made. T₁ F Rd = 0.2 m md = 2 kg T T₂1 Rc = 0.4 m mc = 5 kg ☐ m = 3 kgarrow_forward(read image) (answer given)arrow_forward
- 11-5. Compute all the dimensional changes for the steel bar when subjected to the loads shown. The proportional limit of the steel is 230 MPa. 265 kN 100 mm 600 kN 25 mm thickness X Z 600 kN 450 mm E=207×103 MPa; μ= 0.25 265 kNarrow_forwardT₁ F Rd = 0.2 m md = 2 kg T₂ Tz1 Rc = 0.4 m mc = 5 kg m = 3 kgarrow_forward2. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. (x + 2)²y" + (x + 2)y' - y = 0 ; Hint: Let: z = x+2arrow_forward
- 1. Find a power series solution in powers of x. y" - y' + x²y = 0arrow_forward3. Find a basis of solutions by the Frobenius method. Try to identify the series as expansions of known functions. 8x2y" +10xy' + (x 1)y = 0 -arrow_forwardHello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





