EBK PHYSICS FOR SCIENTISTS AND ENGINEER
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100461260
Author: SERWAY
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 33, Problem 33.76AP

A series RLC circuit in which R = l.00 Ω, L = 1.00 mH, and C = 1.00 nF is connected to an AC source delivering 1.0 V (rms). (a) Make a precise graph of the power delivered to the circuit as a function of the frequency and (b) verify that the full width of the resonance peak at half-maximum is R/2πL.

(a)

Expert Solution
Check Mark
To determine

To draw: A precise graph of the power delivered to the circuit as a function of the frequency.

Answer to Problem 33.76AP

The precise graph of the power delivered to the circuit as a function of the frequency is shown below.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 33, Problem 33.76AP , additional homework tip  1

Explanation of Solution

Given info: The value of resistance is 1.00Ω , value of inductance is 1.00mH , value of capacitance is 1.00nF , and source with 1.00V .

Formula to calculate the inductive reactance of the circuit is,

XL=ωL

Here,

XL is the inductive reactance of the circuit.

ω is the angular frequency of the source.

L is the inductance of the inductor.

Formula to calculate the inductive reactance of the circuit is,

XC=1ωC

Here,

XC is the inductive reactance of the circuit.

C is the capacitance of the capacitor.

Formula to calculate the impedance of the circuit is,

Z=R2+(XLXC)2

Here,

Z is the impedance in the circuit.

R is the resistance in the circuit.

Substitute ωL for XL and 1ωC for XC to find Z .

Z=R2+(ωL1ωC)2

Formula to calculate the rms current in the circuit is,

Irms=ΔVrmsZ

Here,

Irms is the rms current in the circuit.

ΔVrms is the rms source voltage.

Write the expression for the power deliver to the circuit.

P=(Irms)2R

Substitute ΔVrmsZ for Irms in above circuit.

P=(ΔVrmsZ)2R

Substitute R2+(ωL1ωC)2 for Z .

P=(ΔVrmsR2+(ωL1ωC)2)2R=(ΔVrms)2(R2+(ωL1ωC)2)R

Substitute 1.00V for ΔVrms , 1.00mH for L and 1.00nF for C and 1.00Ω for R .

=(1.00V)2(1.00Ω)((1.00Ω)2+(ω(1.00mH×103H1mH)1ω(1.00nC×109C1C))2)=1.00(1.00Ω2+((103H)ω1(109C)ω)2)=1.001.00Ω2+(1018C1)((1012HC)ω1ω)2

Draw the table for the power for different values of frequency.

ωω0(106rad/s) XL=ωL(Ω) XC=1ωC(Ω) Z(Ω) P=1.00V2ΩZ2(W)
0.9991 999.1 1000.9 2.06 0.23569
0.9993 999.3 1000.7 1.72 0.33768
0.9995 999.5 1000.5 1.41 0.49987
0.9997 999.7 1000.3 1.17 0.73524
0.9999 999.9 1000.1 1.02 0.96153
1.0000 1000 1000.0 1.00 1.00000
1.0001 1000.1 999.9 1.02 0.96154
1.0003 1000.3 999.7 1.17 0.73535
1.0005 1000.5 999.5 1.41 0.50012
1.0007 1000.7 999.3 1.72 0.33799
1.0009 1000.9 999.1 2.06 0.23601

Draw precise graph of the power delivered to the circuit as a function of the frequency.

EBK PHYSICS FOR SCIENTISTS AND ENGINEER, Chapter 33, Problem 33.76AP , additional homework tip  2

Figure (1)

(b)

Expert Solution
Check Mark
To determine

To verify: The full width of the resonance peak at half maximum is R/2πL .

Answer to Problem 33.76AP

Hence, the full width of the resonance peak at half maximum is R/2πL .

Explanation of Solution

Given info: The value of resistance is 1.00Ω , value of inductance is 1.00mH , value of capacitance is 1.00nF , and source with 1.00V .

Write the expression for the term R/2πL .

k=R2πL

Substitute 1.00Ω for R and 1.00mH for L .

=1.00Ω2π(1.00mH×103mH1H)=159 (1)

From the graph the half maximum power occurs at two values of the angular frequencies that are ω2=1.0005×103rad/s and ω1=0.9995×103rad/s .

Formula to calculate the angular bandwidth is,

Δω=ω2ω1

Substitute 1.0005×103rad/s for ω2 and 0.9995×103rad/s for ω1 to find Δω

Δω=1.0005×103rad/s0.9995×103rad/s=1.00×103rad/s

Write the expression for the frequency bandwidth.

Δω=2πΔf

Rearrange the equation for Δf .

Δf=Δω2π

Substitute 1.00×103rad/s for Δω to find Δf .

Δf=1.00×103rad/s2π=159.15 (2)

From equation (1) and equation (2), the RHS values are same that verify the full width of the resonance peak at the half power maximum is R/2πL .

Conclusion:

Therefore, the full width of the resonance peak at half maximum is R/2πL .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20
Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…
SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]

Chapter 33 Solutions

EBK PHYSICS FOR SCIENTISTS AND ENGINEER

Ch. 33 - Prob. 33.4OQCh. 33 - Prob. 33.5OQCh. 33 - A sinusoidally varying potential difference has...Ch. 33 - A series RLCcircuit contains a 20.0- resistor, a...Ch. 33 - A resistor, a capacitor, and an inductor are...Ch. 33 - (a) Why does a capacitor act as a short circuit at...Ch. 33 - What is the plia.se angle in a series RLC circuit...Ch. 33 - Prob. 33.11OQCh. 33 - A 6.00-V battery is connected across the primary...Ch. 33 - Do AC ammeters and voltmeters read (a)...Ch. 33 - (a) Explain how the quality factor is related to...Ch. 33 - (a) Explain how the mnemonic ELI the ICE man can...Ch. 33 - Why is the sum of the maximum voltages across each...Ch. 33 - (a) Does the phase angle in an RLC series circuit...Ch. 33 - Prob. 33.5CQCh. 33 - As shown in Figure CQ33.6, a person pulls a vacuum...Ch. 33 - Prob. 33.7CQCh. 33 - Will a transformer operate if a battery is used...Ch. 33 - Prob. 33.9CQCh. 33 - Prob. 33.10CQCh. 33 - When an AC source is connected across a 12.0-...Ch. 33 - (a) What is the resistance of a lightbulb that...Ch. 33 - An AC power supply produces a maximum voltage Vmax...Ch. 33 - A certain lightbulb is rated at 60.0 W when...Ch. 33 - The current in the circuit shown in Figure P32.3...Ch. 33 - In the AC circuit shown in Figure P32.3, R = 70.0 ...Ch. 33 - An audio amplifier, represented by the AC I source...Ch. 33 - Figure P32.4 shows three lightbulbs connected to a...Ch. 33 - An inductor has a .54.0- reactance when connected...Ch. 33 - In a purely inductive AC circuit as shown in...Ch. 33 - Prob. 33.11PCh. 33 - An inductor is connected to an AC power supply...Ch. 33 - An AC source has an output rms voltage of 78.0 V...Ch. 33 - A 20.0-mH inductor is connected to a North...Ch. 33 - Review. Determine the maximum magnetic flux...Ch. 33 - The output voltage of an AC source is given by v =...Ch. 33 - A 1.00-mF capacitor is connected to a North...Ch. 33 - An AC source with an output rms voltage of 86.0 V...Ch. 33 - (a) For what frequencies does a 22.0-F capacitor...Ch. 33 - A source delivers an AC voltage of the form =...Ch. 33 - What maximum current is delivered by an AC source...Ch. 33 - A capacitor C is connected to a power supply that...Ch. 33 - What is the maximum current in a 2.20-F capacitor...Ch. 33 - An AC source with Vmax = 150 V and f = 50.0 Hz is...Ch. 33 - In addition to phasor diagrams showing voltages...Ch. 33 - A sinusoidal voltage = 40.0 sin 100t, where is...Ch. 33 - A series AC circuit contains a resistor, an...Ch. 33 - At what frequency does the inductive reactance of...Ch. 33 - An RLC circuit consists of a 150- resistor, a...Ch. 33 - Prob. 33.30PCh. 33 - An inductor (L = 400 mH), a capacitor (C = 4.43...Ch. 33 - A 60.0-ft resistor is connected in series with a...Ch. 33 - Review. In an RLC series circuit that includes a...Ch. 33 - Prob. 33.34PCh. 33 - A series RLC circuit has a resistance of 45.0 and...Ch. 33 - An AC voltage of the form = 100 sin 1 000t, where...Ch. 33 - A series RLC circuit has a resistance of 22.0 and...Ch. 33 - An AC voltage of the form v = 90.0 sin 350t, where...Ch. 33 - ln a certain series RLC circuit, Irms = 9.00 A,...Ch. 33 - Prob. 33.40PCh. 33 - Prob. 33.41PCh. 33 - A series RLC circuit has components with the...Ch. 33 - An RLC circuit is used in a radio to tune into an...Ch. 33 - The LC circuit of a radar transmitter oscillates...Ch. 33 - A 10.0- resistor, 10.0-mH inductor, and 100-F...Ch. 33 - A resistor R, inductor L, and capacitor C are...Ch. 33 - Review. A radar transmitter contains an LC circuit...Ch. 33 - A step-down transformer is used for recharging the...Ch. 33 - The primary coil of a transformer has N1 = 350...Ch. 33 - A transmission line that has a resistance per unit...Ch. 33 - In the transformer shown in Figure P33.51, the...Ch. 33 - A person is working near the secondary of a...Ch. 33 - The RC high-pass filter shown in Figure P33.53 has...Ch. 33 - Consider the RC high-pass filler circuit shown in...Ch. 33 - Prob. 33.55PCh. 33 - Consider the Filter circuit shown in Figure...Ch. 33 - A step-up transformer is designed to have an...Ch. 33 - Prob. 33.58APCh. 33 - Review. The voltage phasor diagram for a certain...Ch. 33 - Prob. 33.60APCh. 33 - Energy is to be transmitted over a pair of copper...Ch. 33 - Energy is to be transmitted over a pair of copper...Ch. 33 - A 400- resistor, an inductor, and a capacitor are...Ch. 33 - Show that the rms value for the sawtooth voltage...Ch. 33 - A transformer may be used to provide maximum power...Ch. 33 - A capacitor, a coil, and two resistors of equal...Ch. 33 - Marie Cornu, a physicist at the Polytechnic...Ch. 33 - A series RLC circuit has resonance angular...Ch. 33 - Review. One insulated conductor from a household...Ch. 33 - (a) Sketch a graph of the phase angle for an RLC...Ch. 33 - In Figure P33.71, find the rms current delivered...Ch. 33 - Review. In the circuit shown in Figure P32.44,...Ch. 33 - Prob. 33.73APCh. 33 - A series RLC circuit is operating at 2.00 103 Hz....Ch. 33 - A series RLC circuit consists of an 8.00-...Ch. 33 - A series RLC circuit in which R = l.00 , L = 1.00...Ch. 33 - The resistor in Figure P32.49 represents the...Ch. 33 - An 80.0- resistor and a 200-mH inductor are...Ch. 33 - Prob. 33.79CPCh. 33 - P33.80a shows a parallel RLC circuit. The...Ch. 33 - Prob. 33.81CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY