
Marie Cornu, a physicist at the Polytechnic Institute in Paris, invented phasors in about 1880. This problem helps you see their general utility in representing oscillations. Two mechanical vibrations are represented by the expressions
and
where y1 and y2 are in centimeters and t is in seconds. Find the amplitude and phase constant of the sum of these functions (a) by using a trigonometric identity (as from Appendix B) and (b) by representing the oscillations as phasors. (c) State the result of comparing the answers to parts (a) and (b). (d) Phasors make it equally easy to add traveling waves. Find the amplitude and phase constant of the sum of the three waves represented by
where x, y1, y2, and y3, are in centimeters and t is in seconds.
(a)

Answer to Problem 33.67AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the sum of two wave functions.
Here,
Substitute
Further solve the equation,
Conclusion:
Therefore, the amplitude of the sum of the given function by trigonometry identity is
(b)

Answer to Problem 33.67AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the phasor of a first oscillation.
Write the expression for the phasor of a second oscillation.
Write the expression for the sum of two wave functions.
Substitute
Thus, the phasor representation of the sum of two wave functions is
Formula to calculate the amplitude of the resultant wave is,
Here,
Substitute
Thus, the amplitude of the resultant wave is
Formula to calculate the angle of the resultant wave makes with the first wave is,
Substitute
Thus, phase difference between the resultant and the
Conclusion:
Therefore, the amplitude of the sum of the given function by phasor representation is
(c)

Answer to Problem 33.67AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Since from the trigonometry identities the amplitude and the phase angle of the sum of two waves are identical to the amplitude and the phase angle of the sum of two waves by phasor representation, hence the both the method is valid to estimate the amplitude and the phase angle of the resultant wave.
Conclusion:
Therefore, the result of part (a) and part (b) are identical.
(d)

Answer to Problem 33.67AP
Explanation of Solution
Given info: The mechanical vibration of first wave is
Write the expression for the phasor of a first oscillation.
Write the expression for the phasor of a second oscillation.
Write the expression for the phasor of a third oscillation.
Write the expression for the sum of two wave functions.
Substitute
Thus, the phasor representation of the sum of three wave functions is
Formula to calculate the amplitude of the resultant wave is,
Here,
Substitute
Thus, the amplitude of the resultant wave is
Formula to calculate the angle of the resultant wave is,
Substitute
Write the expression for the angle with the first wave.
Substitute
Conclusion:
Therefore, the amplitude of the sum of the given function by phasor representation is
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
- What fuel economy should be expected from a gasoline powered car that encounters a total of 443N of resistive forces while driving down the road? (Those forces are from air drag, rolling resistance and bearing losses.) Assume a 30% thermodynamic efficiency.arrow_forwardNo chatgpt pls will upvotearrow_forward12. What is the angle between two unit vectors if their dot product is 0.5?arrow_forward
- If the car in the previous problem increases its power output by 10% (by pressing the gas pedal farther down), at what rate will the car accelerate? Hint: Consider the net force. In the previous problem the power was 31.8kWarrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forwardNo chatgpt pls will upvotearrow_forward
- As a box is lifted against gravity and placed on a shelf, how does the work done by the lifter compare with the work done by gravity? What is the net work done on the box? What does this imply about its change in kinetic energy? Use definitions and mathematics from this chapter to answer these questions.arrow_forwardAs I carry a box up a flight of stairs, am I doing positive work or negative work on the box? Provide a mathematical explanation.arrow_forwardAs a ball falls under the influence of gravity, does gravity do positive work or negative work? Provide a mathematical explanation.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





