
Review. The voltage phasor diagram for a certain series RLC circuit is shown in Figure P33.59. The resistance of the circuit is 75.0 Ω, and the frequency is 60.0 Hz. Find (a) the maximum voltage ΔVmax, (b) the phase angle ϕ, (c) the maximum current, (d) the impedance, (e) the capacitance and (f) the inductance of the circuit, and (g) the average power delivered to the circuit.
(a)

The maximum voltage.
Answer to Problem 33.59AP
The maximum voltage is
Explanation of Solution
Given info: The resistance of the circuit is
The expression for maximum value of the voltage is,
Here,
Substitute
Conclusion:
Therefore, the maximum voltage is
(b)

The phase angle.
Answer to Problem 33.59AP
The phase angle is
Explanation of Solution
Given info: The resistance of the circuit is
The expression for the phase angle is,
Substitute
Conclusion:
Therefore, the phase angle is
(c)

The maximum current.
Answer to Problem 33.59AP
The maximum current is
Explanation of Solution
Given info: The resistance of the circuit is
The expression for maximum current is,
Here,
Substitute
Conclusion:
Therefore, the maximum current is
(d)

The impedance.
Answer to Problem 33.59AP
The impedance is
Explanation of Solution
Given info: The resistance of the circuit is
The expression for the impedance is,
Substitute
Conclusion:
Therefore, the impedance is
(e)

The capacitance.
Answer to Problem 33.59AP
The capacitance is
Explanation of Solution
Given info: The resistance of the circuit is
The circuit is series
The expression capacitive reactance is,
Substitute
The expression capacitive reactance in terms of the capacitance is,
Here,
Rearrange the above equation for the value of capacitance.
Substitute
Conclusion:
Therefore, the capacitance is
(f)

The inductance of the circuit.
Answer to Problem 33.59AP
The inductance of the circuit
Explanation of Solution
Given info: The resistance of the circuit is
The circuit is series
The expression inductive reactance is,
Substitute
Thus the value of inductive reactance is
The expression inductive reactance in terms of the inductance is,
Here,
Rearrange the above equation for the value of inductance.
Substitute
Conclusion:
Therefore, the inductance is
(g)

The average power delivered to circuit.
Answer to Problem 33.59AP
The average power delivered to circuit is
Explanation of Solution
Given info: The resistance of the circuit is
The expression for R.M.S value of the current is,
The expression for the average power delivered is,
Substitute
Substitute
Conclusion:
Therefore, the average power delivered to circuit is
Want to see more full solutions like this?
Chapter 33 Solutions
Physics for Scientists and Engineers
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





