The Tubular Ride Boogie Board Company has manufacturing plants in Tucson, Arizona, and Toronto, Ontario. You have been given the job of coordinating distribution of the latest model, the Gladiator, to their outlets in Honolulu and Venice Beach. The Tucson plant, when operating at full capacity, can manufacture 620 Gladiator boards per week, while the Toronto plant, beset by labor disputes, can produce only 310 boards per week. The outlet in Honolulu orders 470 Gladiator boards per week, while Venice Beach orders 490 boards per week. Transportation costs are as follows: Tucson to Honolulu: $10 per board; Tucson to Venice Beach: $5 per board; Toronto to Honolulu: $20 per board; Toronto to Venice Beach: $10 per board. Your manager has informed you that the company's total transportation budget is $5,250. You realize that it may not be possible to fill all the orders, but you would like the total number of boogie boards shipped to be as large as possible. Given this, how many Gladiator boards should you order shipped from each manufacturing plant to each distribution outlet?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
The Tubular Ride Boogie Board Company has manufacturing plants in Tucson, Arizona, and Toronto, Ontario. You have been given the job of coordinating distribution of the latest model, the Gladiator, to their outlets in Honolulu and Venice Beach. The Tucson plant, when operating at full capacity, can manufacture 620 Gladiator boards per week, while the Toronto plant, beset by labor disputes, can produce only 310 boards per week. The outlet in Honolulu orders 470 Gladiator boards per week, while Venice Beach orders 490 boards per week. Transportation costs are as follows: Tucson to Honolulu: $10 per board; Tucson to Venice Beach: $5 per board; Toronto to Honolulu: $20 per board; Toronto to Venice Beach: $10 per board. Your manager has informed you that the company's total transportation budget is $5,250. You realize that it may not be possible to fill all the orders, but you would like the total number of boogie boards shipped to be as large as possible. Given this, how many Gladiator boards should you order shipped from each manufacturing plant to each distribution outlet?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images