Pearson eText Linear Algebra and Its Applications -- Instant Access (Pearson+)
6th Edition
ISBN: 9780136880929
Author: David Lay, Judi McDonald
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3.3, Problem 22E
In Exercises 19-22, find the area of the parallelogram whose vertices are listed.
22. (0, −2), (5, −2), (−3, 1), (2, 1)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answers
*************
*********************************
Q.1) Classify the following statements as a true or false statements:
a. If M is a module, then every proper submodule of M is contained in a maximal
submodule of M.
b. The sum of a finite family of small submodules of a module M is small in M.
c. Zz is directly indecomposable.
d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M.
e. The Z-module has two composition series.
Z
6Z
f. Zz does not have a composition series.
g. Any finitely generated module is a free module.
h. If O→A MW→ 0 is short exact sequence then f is epimorphism.
i. If f is a homomorphism then f-1 is also a homomorphism.
Maximal C≤A if and only if is simple.
Sup
Q.4) Give an example and explain your claim in each case:
Monomorphism not split.
b) A finite free module.
c) Semisimple module.
d) A small submodule A of a module N and a homomorphism op: MN, but
(A) is not small in M.
I need diagram with solutions
Chapter 3 Solutions
Pearson eText Linear Algebra and Its Applications -- Instant Access (Pearson+)
Ch. 3.1 - Compute |5722030458030506|.Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 18 using a...Ch. 3.1 - Compute the determinants in Exercises 914 by a...
Ch. 3.1 - Compute the determinants in Exercises 914 by a...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - Compute the determinants in Exercises 914 by...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - The expansion of a 3 3 determinant can be...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - In Exercises 1924, explore the effect of an...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Compute the determinants of the elementary...Ch. 3.1 - Prob. 31ECh. 3.1 - Prob. 32ECh. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - In Exercises 3336, verify that det EA = (det...Ch. 3.1 - Let A = [3142] Write 5A. Is det 5A = 5 det A?Ch. 3.1 - Let .A = [abcd] and let k be a scalar. Find a...Ch. 3.1 - Prob. 39ECh. 3.1 - Prob. 40ECh. 3.1 - In Exercises 39 through 42, A is an nn matrix....Ch. 3.1 - In Exercises 39 through 42, A is an nn matrix....Ch. 3.1 - Let u = [30] and v = [12]. Compute the area of the...Ch. 3.1 - Let u = [ab] and v = [c0], where a, b, and c are...Ch. 3.1 - Prob. 45ECh. 3.1 - Prob. 46ECh. 3.1 - Prob. 49ECh. 3.2 - PRACTICE PROBLEMS 1. Compute |13122512045131068|...Ch. 3.2 - Use a determinant to decide if v1, v2, and v3 are...Ch. 3.2 - Let A be an n n matrix such that A2 = I. Show...Ch. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Each equation in Exercises 1—4 illustrates a...Ch. 3.2 - Prob. 3ECh. 3.2 - Each equation in Exercises 14 illustrates a...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 5—10 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 510 by row...Ch. 3.2 - Find the determinants in Exercises 5—10 by row...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Combine the methods of row reduction and cofactor...Ch. 3.2 - Find the determinants in Exercises 1520, where 15....Ch. 3.2 - Find the determinants in Exercises 15—20, where...Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - Find the determinants in Exercises 15—20, where...Ch. 3.2 - Find the determinants in Exercises 1520, where...Ch. 3.2 - Find the determinants in Exercises 15—20, where...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 2123, use determinants to find out if...Ch. 3.2 - In Exercises 24—26, use determinants to decide...Ch. 3.2 - In Exercises 2426, use determinants to decide if...Ch. 3.2 - In Exercises 2426, use determinants to decide if...Ch. 3.2 - In Exercises 27—34, A and B are nn matrices....Ch. 3.2 - In Exercises 27—34, A and B are nn matrices....Ch. 3.2 - In Exercises 27—34, A and B are nn matrices....Ch. 3.2 - In Exercises 27—34, A and B are nn matrices....Ch. 3.2 - In Exercises 27—34, A and B are nn matrices....Ch. 3.2 - Prob. 34ECh. 3.2 - Compute det B4 where B = [101112121]Ch. 3.2 - Use Theorem 3 (but not Theorem 4) to show that if...Ch. 3.2 - Show that if A is invertible, then detA1=1detA.Ch. 3.2 - Suppose that A is a square matrix such that det A3...Ch. 3.2 - Let A and B be square matrices. Show that even...Ch. 3.2 - Let A and P be square matrices, with P invertible....Ch. 3.2 - Let U be a square matrix such that UTU = 1. Show...Ch. 3.2 - Find a formula for det(rA) when A is an n n...Ch. 3.2 - Verify that det AB = (det A)(det B) for the...Ch. 3.2 - Verify that det AB = (det A)(det B) for the...Ch. 3.2 - Let A and B be 3 3 matrices, with det A = 3 and...Ch. 3.2 - Let A and B be 4 4 matrices, with det A = 3 and...Ch. 3.2 - Prob. 47ECh. 3.2 - Let A = [1001] and B = [abcd]. Show that det(A +...Ch. 3.2 - Verify that det A = det B + det C, where A =...Ch. 3.2 - Right-multiplication by an elementary matrix E...Ch. 3.2 - Prob. 52ECh. 3.3 - Let S be the parallelogram determined by the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - Use Cramers rule to compute the solutions of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 710, determine the values of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - In Exercises 1116, compute the adjugate of the...Ch. 3.3 - Show that if A is 2 2, then Theorem 8 gives the...Ch. 3.3 - Suppose that all the entries in A are integers and...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 1922, find the area of the...Ch. 3.3 - In Exercises 19-22, find the area of the...Ch. 3.3 - Find the volume of the parallelepiped with one...Ch. 3.3 - Find the volume of the parallelepiped with one...Ch. 3.3 - Use the concept of volume to explain why the...Ch. 3.3 - Let T : m n be a linear transformation, and let p...Ch. 3.3 - Let S be the parallelogram determined by the...Ch. 3.3 - Repeat Exercise 27 with b1=[47], b2=[01], and...Ch. 3.3 - Find a formula for the area of the triangle whose...Ch. 3.3 - Let R be the triangle with vertices at (x1, y1),...Ch. 3.3 - Let T: 3 3 be the linear transformation...Ch. 3.3 - Prob. 35ECh. 3.3 - Prob. 36ECh. 3.3 - Prob. 37ECh. 3.3 - Prob. 38ECh. 3 - Prob. 1SECh. 3 - In Exercises 1—15, mark each statement True or...Ch. 3 - In Exercises 1—15, mark each statement True or...Ch. 3 - Prob. 4SECh. 3 - Prob. 5SECh. 3 - Prob. 6SECh. 3 - Prob. 9SECh. 3 - In Exercises 1—15, mark each statement True or...Ch. 3 - Prob. 11SECh. 3 - Prob. 12SECh. 3 - Prob. 14SECh. 3 - Use row operations to show that the determinants...Ch. 3 - Use row operations to show that the determinants...Ch. 3 - Prob. 18SECh. 3 - Compute the determinants in Exercises 5 and 6. 5....Ch. 3 - Compute the determinants in Exercises 5 and 6. 6....Ch. 3 - Show that the equation of the line in 2 through...Ch. 3 - Exercise 9 and 10 concern determinants of the...Ch. 3 - Let f(t) = det V, with x1, x2, and x3 all...Ch. 3 - Find the area of the parallelogram determined by...Ch. 3 - Use the concept of area of a parallelogram to...Ch. 3 - Prob. 27SECh. 3 - Let A,B,C,D, and I be n n matrices. Use the...Ch. 3 - Let A, B, C, and D be n n matrices with A...Ch. 3 - Let J be the n n matrix of all 1s, and consider A...
Additional Math Textbook Solutions
Find more solutions based on key concepts
1. How much money is Joe earning when he’s 30?
Pathways To Math Literacy (looseleaf)
In Exercises 5-36, express all probabilities as fractions.
23. Combination Lock The typical combination lock us...
Elementary Statistics
For Exercises 13–18, write the negation of the statement.
13. The cell phone is out of juice.
Math in Our World
23. A plant nursery sells two sizes of oak trees to landscapers. Large trees cost the nursery $120 from the gro...
College Algebra (Collegiate Math)
The largest polynomial that divides evenly into a list of polynomials is called the _______.
Elementary & Intermediate Algebra
Teacher Salaries
The following data from several years ago represent salaries (in dollars) from a school distri...
Elementary Statistics: A Step By Step Approach
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- T. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardListen ANALYZING RELATIONSHIPS Describe the x-values for which (a) f is increasing or decreasing, (b) f(x) > 0 and (c) f(x) <0. y Af -2 1 2 4x a. The function is increasing when and decreasing whenarrow_forwardBy forming the augmented matrix corresponding to this system of equations and usingGaussian elimination, find the values of t and u that imply the system:(i) is inconsistent.(ii) has infinitely many solutions.(iii) has a unique solutiona=2 b=1arrow_forwardif a=2 and b=1 1) Calculate 49(B-1)2+7B−1AT+7ATB−1+(AT)2 2)Find a matrix C such that (B − 2C)-1=A 3) Find a non-diagonal matrix E ̸= B such that det(AB) = det(AE)arrow_forwardWrite the equation line shown on the graph in slope, intercept form.arrow_forward1.2.15. (!) Let W be a closed walk of length at least 1 that does not contain a cycle. Prove that some edge of W repeats immediately (once in each direction).arrow_forward1.2.18. (!) Let G be the graph whose vertex set is the set of k-tuples with elements in (0, 1), with x adjacent to y if x and y differ in exactly two positions. Determine the number of components of G.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forward1.2.20. (!) Let u be a cut-vertex of a simple graph G. Prove that G - v is connected. עarrow_forward1.2.12. (-) Convert the proof at 1.2.32 to an procedure for finding an Eulerian circuit in a connected even graph.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
03 - The Cartesian coordinate system; Author: Technion;https://www.youtube.com/watch?v=hOgKEplCx5E;License: Standard YouTube License, CC-BY
What is the Cartesian Coordinate System? | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=mgx0kT5UbKk;License: Standard YouTube License, CC-BY