DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 33, Problem 1RQ
What are the four traditional families of shape-production processes?
Expert Solution & Answer
To determine
The four traditional families of shape production processes.
Explanation of Solution
The four traditional families of shape production are as follows,
- Casting process- It is the type of manufacturing process in which the material in the molten state is poured into the mold and keeps till it solidifies. This process is used for making complex parts or components.
- Material removal process - In this type of manufacturing process, the excess material is removed from the raw material in order to obtain the final product.
- Consolidation process- In the consolidation process, the smaller components or parts are assembled to obtain the larger parts.
- Deformation process- In this process, the final product is obtained by changing the shape of a material by deforming it. The raw material is plastically deformed with the help of tools and machinery.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In the image is a right rectangular pyramid of total mass m. Note the location of point Q. Determine the inertia dyadic for the pyramid P, relative to point Q for e hat unit vectors.
auto controls
I am having a hard time solving for the vector v in the equation in the image. Can you help me?
Chapter 33 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 33 - What are the four traditional families of...Ch. 33 - What are some of the assets and limitations of the...Ch. 33 - What are some of the manufacturing changes or new...Ch. 33 - Prob. 4RQCh. 33 - What is a prototype and how is it used?Ch. 33 - What are the four areas of application for the...Ch. 33 - What are some of the other terms that have been...Ch. 33 - What are the attractive benefits of free-form...Ch. 33 - What is involved in preprocessing?Ch. 33 - Prob. 10RQ
Ch. 33 - Prob. 11RQCh. 33 - Prob. 12RQCh. 33 - Prob. 13RQCh. 33 - What are the three families of layerwise...Ch. 33 - Prob. 15RQCh. 33 - Prob. 16RQCh. 33 - Prob. 17RQCh. 33 - What is stairstepping?Ch. 33 - Describe the coordinate system that has become...Ch. 33 - Prob. 20RQCh. 33 - What are some of the factors that affect the...Ch. 33 - What is hatching and how might it be affected by...Ch. 33 - Prob. 23RQCh. 33 - Of the three components of build time...Ch. 33 - Prob. 25RQCh. 33 - How the various layers produced during...Ch. 33 - Prob. 27RQCh. 33 - Prob. 28RQCh. 33 - Prob. 29RQCh. 33 - Prob. 30RQCh. 33 - Prob. 31RQCh. 33 - What are the advantages of inkjet deposition (ID)...Ch. 33 - How are the various layers produced during...Ch. 33 - Prob. 34RQCh. 33 - Prob. 35RQCh. 33 - How might the products of selective laser...Ch. 33 - Prob. 37RQCh. 33 - Why might some form of protective atmosphere be...Ch. 33 - Prob. 39RQCh. 33 - What is the difference between selective laser...Ch. 33 - Describe the ideal product for manufacture by...Ch. 33 - What are some of the advantages of using an...Ch. 33 - How are the various layers produced during 3-D...Ch. 33 - Prob. 44RQCh. 33 - Prob. 45RQCh. 33 - Prob. 46RQCh. 33 - Prob. 47RQCh. 33 - What are some of the potential benefits of...Ch. 33 - Prob. 49RQCh. 33 - Prob. 50RQCh. 33 - What are some of the advantages and disadvantages...Ch. 33 - Prob. 52RQCh. 33 - Prob. 53RQCh. 33 - Prob. 54RQCh. 33 - Prob. 55RQCh. 33 - How are products extracted after a...Ch. 33 - Prob. 57RQCh. 33 - Prob. 58RQCh. 33 - Prob. 59RQCh. 33 - What are some of the advantages of a physical...Ch. 33 - Prob. 61RQCh. 33 - How can the additive manufacturing processes be...Ch. 33 - Prob. 63RQCh. 33 - Prob. 64RQCh. 33 - Prob. 65RQCh. 33 - Prob. 66RQCh. 33 - Prob. 67RQCh. 33 - Prob. 68RQCh. 33 - Prob. 69RQCh. 33 - What are some of the commonly cited limitations or...Ch. 33 - Prob. 71RQCh. 33 - Prob. 72RQCh. 33 - Prob. 73RQCh. 33 - Prob. 74RQCh. 33 - Which of the additive manufacturing processes can...Ch. 33 - Prob. 2PCh. 33 - Prob. 3PCh. 33 - The ability to restore worn parts to original...Ch. 33 - Prob. 5PCh. 33 - Prob. 6PCh. 33 - Prob. 7PCh. 33 - Prob. 8P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 4 ft 300 Ib 1000 Ib.ft 350 Ib C 2 ft 3. 45° 250 Ib B. 3ft B 25ft 200 Ib 150 Ib Replace the force system acting on the frame shown in the figure by a resultant force (magnitude and direction), and specify where its line of action intersects member (AB), measured from point (A).arrow_forwardCan you research the standard percentage of Steam Quality in:(1.) Boiler - leaving boilerBoiler -> Out(2.) Condenser - coming in condenser In -> CondenserProvide reference Also define: steam quality, its purpose and importancearrow_forwardNumbers 1 and 2 and 5 are are optional problems. However, I only need the values (with units) of 3, 4 and 6. Thank you :)arrow_forward
- Three cables are pulling on a ring located at the origin, as shown in the diagram below. FA is 200 N in magnitude with a transverse angle of 30° and an azimuth angle of 140°. FB is 240 N in magnitude with coordinate direction angles α = 135° and β = 45°. Determine the magnitude and direction of FC so that the resultant of all 3 force vectors lies on the z-axis and has a magnitude of 300 N. Specify the direction of FC using its coordinate direction angles.arrow_forwardturbomachieneryarrow_forwardauto controlsarrow_forward
- auto controlsarrow_forward1 Pleasearrow_forwardA spring cylinder system measures the pressure. Determine which spring can measure pressure between 0-1 MPa with a large excursion. The plate has a diameter of 20 mm. Also determine the displacement of each 0.1 MPa step.Spring power F=c x fF=Springpower(N)c=Spring constant (N/mm)f=Suspension (mm) How do I come up with right answer?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning
Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Basic Fabrication Techniques; Author: Weld.com;https://www.youtube.com/watch?v=3OW7iRnC8Ck;License: Standard Youtube License