
Concept explainers
(a)
The inductor which has the greater inductance per unit length.
(a)

Answer to Problem 1PQ
The short and wide inductor has more inductance per unit length.
Explanation of Solution
Given that the two solenoids have the same number of turns per unit length, but one is short and wide and the other is long and narrow.
Write the expression for the inductance of a solenoid.
Here,
Rearrange the above equation to find inductance per unit length.
Conclusion:
From the above equation (II), it is clear that inductance per unit length is directly proportional to the area of cross section of the solenoid for same number of turns per unit length.
So, the inductance per unit length is more for the conductor having large cross section area.
Therefore, the short and wide inductor has more inductance per unit length.
(b)
The possibility for the two conductors to have the same inductance
(b)

Answer to Problem 1PQ
The inductance of two inductors will be same if the product of the cross sectional area and the length of the inductor is same for both the inductors.
Explanation of Solution
From equation (I), it is clear that if two coils have same number of turns per unit length, then the inductance of the coil is proportional to the product of the area of cross section and length of the coil.
So, the inductance of the two coils will be same if the product of area of cross section and length of the coil is same for both the coils.
Conclusion:
Therefore, the inductance of two inductors will be same if the product of the cross sectional area and the length of the inductor is same for both the inductors.
Want to see more full solutions like this?
Chapter 33 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





