
(a)
The expression for the total energy that dissipated by the resistor in one time constant.
(a)

Answer to Problem 17PQ
The expression for the total energy that dissipated by the resistor in one time constant is,
Explanation of Solution
The following figure shows the given diagram-
Figure-(1)
Here,
Write the expression for current pass through the resistor.
Here,
Write the expression for power dissipated in the resistor as function of time.
Here,
Substitute
Write the expression for energy dissipated
Substitute
Integrate the above expression between the limits
Conclusion:
Therefore, the expression for the total energy that dissipated by the resistor in one time constant is
(b)
The expression for the total charge that passes through the resistor in one time constant.
(b)

Answer to Problem 17PQ
The expression for the total charge that passes through the resistor in one time constant is,
Explanation of Solution
Write the expression for decaying current.
Write the expression for power dissipated in the resistor as function of time.
Substitute
Integrate the above expression between the limits
Conclusion:
Therefore, the expression for the total energy that dissipated by the resistor in one time constant is,
(c)
The comparison between the above two results and comment.
(c)

Answer to Problem 17PQ
The energy dissipated in the resistor when the current decays is more than the energy dissipated when the current grows in the circuit.
Explanation of Solution
Write the expression for energy growth that dissipated through the resistor.
Here,
Write the expression for energy decay that dissipated through the resistor.
Here,
Take the ratio of both equations.
Conclusion:
Substitute
Therefore, the energy dissipated in the resistor when the current decays is more than the energy dissipated when the current grows in the circuit.
Want to see more full solutions like this?
Chapter 33 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





