PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 32, Problem 80P

(a)

To determine

The length of tube.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The power of both lenses is 20D .

Distance between lenses is 30cm .

Formula used:

Write expression for length of tube.

  L=Dfofe

Here, D is distance between lenses, fo is focal length of objective lens and fe is focal length of eye piece.

Substitute 1Po for fo and 1Pe for fe in above expression.

  L=D1Po1Pe  ........ (1)

Calculation:

Substitute 30cm for D , 20D for Po and 20D for Pe in equation (1).

  L=(30cm)( 1m 100cm)120120L=0.20m

Conclusion:

Thus, the length of tube is 0.20m .

(b)

To determine

The lateral magnification of the objective lens.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The power of both lenses is 20D .

Distance between lenses is 30cm .

Formula used:

Write expression for length of tube.

  L=Dfofe

Here, D is distance between lenses, fo is focal length of objective lens and fe is focal length of eye piece.

Substitute 1Po for fo and 1Pe for fe in above expression.

  L=D1Po1Pe  ........ (1)

Write expression for lateral magnification of microscope.

  mo=Lfo

Substitute 1Po for fo in above expression.

  mo=LPo  ........ (2)

Calculation:

Substitute 30cm for D , 20D for Po and 20D for Pe in equation (1).

  L=(30cm)( 1m 100cm)120120L=0.20m

Substitute 0.20m for L and 20D for Po in equation (2).

  m=(0.20m)(20D)m=4.0

Conclusion:

Thus, lateral magnification produced by objective lens is 4.0 .

(c)

To determine

The magnifying power of microscope.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The power of both lenses is 20D .

Distance between lenses is 30cm .

Formula used:

Write expression for length of tube.

  L=Dfofe

Here, D is distance between lenses, fo is focal length of objective lens and fe is focal length of eye piece.

Substitute 1Po for fo and 1Pe for fe in above expression.

  L=D1Po1Pe  ........ (1)

Write expression for lateral magnification of microscope.

  mo=Lfo

Substitute 1Po for fo in above expression.

  mo=LPo  ........ (2)

Write expression for magnifying power of microscope.

  M=moxfe

Here, x is near point and fe is focal length of eyepiece.

Substitute 1Pe for fe in above expression.

  M=moxPe  ........ (3)

Calculation:

Substitute 30cm for D , 20D for Po and 20D for Pe in equation (1).

  L=(30cm)( 1m 100cm)120120L=0.20m

Substitute 0.20m for L and 20D for Po in equation (2).

  mo=(0.20m)(20D)mo=4.0

Substitute 4.0 for mo , 25cm for x and 20D for Pe in equation (3).

  M=(4.0)(25cm)( 1m 100cm)(20D)M=20

Conclusion:

Thus, magnifying power of microscope is 20 .

(d)

To determine

The distance of object from objective lens.

(d)

Expert Solution
Check Mark

Explanation of Solution

Given:

The power of both lenses is 20D .

Distance between lenses is 30cm .

Formula used:

Write expression for lens equation for objective lens.

  1fo=1v+1u

Substitute fo+L for v in above expression.

  1fo=1u+1fo+L

Solve above expression for u .

  u=fo(fo+L)L  ........ (1)

Calculation:

Substitute 120m for fo and 20cm for L in equation (1).

  u=( 1 20 m)( 100cm 1m )( ( 1 20 m )( 100cm 1m )+20cm)20cmu=6.3cm

Conclusion:

Thus, the object is placed 6.3cm from the objective lens.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Hi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.
Examine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.
In addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.

Chapter 32 Solutions

PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS

Ch. 32 - Prob. 11PCh. 32 - Prob. 12PCh. 32 - Prob. 13PCh. 32 - Prob. 14PCh. 32 - Prob. 15PCh. 32 - Prob. 16PCh. 32 - Prob. 17PCh. 32 - Prob. 18PCh. 32 - Prob. 19PCh. 32 - Prob. 20PCh. 32 - Prob. 21PCh. 32 - Prob. 22PCh. 32 - Prob. 23PCh. 32 - Prob. 24PCh. 32 - Prob. 25PCh. 32 - Prob. 26PCh. 32 - Prob. 27PCh. 32 - Prob. 28PCh. 32 - Prob. 29PCh. 32 - Prob. 30PCh. 32 - Prob. 31PCh. 32 - Prob. 32PCh. 32 - Prob. 33PCh. 32 - Prob. 34PCh. 32 - Prob. 35PCh. 32 - Prob. 36PCh. 32 - Prob. 37PCh. 32 - Prob. 38PCh. 32 - Prob. 39PCh. 32 - Prob. 40PCh. 32 - Prob. 41PCh. 32 - Prob. 42PCh. 32 - Prob. 43PCh. 32 - Prob. 44PCh. 32 - Prob. 45PCh. 32 - Prob. 46PCh. 32 - Prob. 47PCh. 32 - Prob. 48PCh. 32 - Prob. 49PCh. 32 - Prob. 50PCh. 32 - Prob. 51PCh. 32 - Prob. 54PCh. 32 - Prob. 55PCh. 32 - Prob. 56PCh. 32 - Prob. 57PCh. 32 - Prob. 58PCh. 32 - Prob. 59PCh. 32 - Prob. 60PCh. 32 - Prob. 61PCh. 32 - Prob. 62PCh. 32 - Prob. 63PCh. 32 - Prob. 64PCh. 32 - Prob. 65PCh. 32 - Prob. 66PCh. 32 - Prob. 67PCh. 32 - Prob. 68PCh. 32 - Prob. 69PCh. 32 - Prob. 70PCh. 32 - Prob. 71PCh. 32 - Prob. 72PCh. 32 - Prob. 73PCh. 32 - Prob. 74PCh. 32 - Prob. 75PCh. 32 - Prob. 76PCh. 32 - Prob. 77PCh. 32 - Prob. 78PCh. 32 - Prob. 79PCh. 32 - Prob. 80PCh. 32 - Prob. 81PCh. 32 - Prob. 82PCh. 32 - Prob. 83PCh. 32 - Prob. 84PCh. 32 - Prob. 85PCh. 32 - Prob. 86PCh. 32 - Prob. 87PCh. 32 - Prob. 88PCh. 32 - Prob. 89PCh. 32 - Prob. 90PCh. 32 - Prob. 91PCh. 32 - Prob. 92PCh. 32 - Prob. 93PCh. 32 - Prob. 94PCh. 32 - Prob. 95PCh. 32 - Prob. 96PCh. 32 - Prob. 97PCh. 32 - Prob. 98PCh. 32 - Prob. 99PCh. 32 - Prob. 100PCh. 32 - Prob. 101PCh. 32 - Prob. 102PCh. 32 - Prob. 103PCh. 32 - Prob. 104PCh. 32 - Prob. 105PCh. 32 - Prob. 106PCh. 32 - Prob. 107P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY