
Concept explainers
(a)
The distance between the object and the final image.
(a)

Explanation of Solution
Given:
The distance of an object is
The focal length of the lens is
The focal length of a second lens is
The distance of the second lens is
Formula used:
Draw a ray diagram to show the image distance and its properties.
Write the expression for the thin lens equation for the first lens.
Here,
Rearrange the above equation to calculate the image distance for first lens.
Write the expression for the thin lens equation for the second lens.
Here,
Rearrange the above equation to calculate the image distance for second lens.
Write the expression for the object distance for second lens.
Here,
Write the expression for object to image distance.
Here,
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the object to the final image distance is
(b)
The overall magnification of the system.
(b)

Explanation of Solution
Given:
The object distance for the first lens is
The image distance for the first lens is
The object distance for the second lens is
The image distance for the second lens is
Formula used:
Write the expression for the lateral magnification of the image formed by the first lens.
Here,
Write the expression for the lateral magnification of the image formed by the second lens.
Here,
Write the expression for the overall magnification for a system of two lenses.
Here,
Substitute
Calculation:
Substitute
Conclusion:
Thus, the overall magnification is
(c)
Whether the object is real or virtual and upright or inverted.
(c)

Explanation of Solution
Given:
The final image distance from the second lens is
The overall magnification for the system of two lenses is
Introduction:
A real image is formed by an object when all the outgoing parallel rays from the object are appeared to converge to a point. For positive image distance the image is real and for negative image distance the image is virtual.
The image distance,
Conclusion:
Thus, the image is real and inverted.
Want to see more full solutions like this?
Chapter 32 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- An object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forwardPls help ASAParrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





