
Concept explainers
(a)
The distance between the object and the final image.
(a)

Explanation of Solution
Given:
The distance of an object is
The focal length of the lens is
The focal length of a second lens is
The distance of the second lens is
Formula used:
Draw a ray diagram to show the image distance and its properties.
Write the expression for the thin lens equation for the first lens.
Here,
Rearrange the above equation to calculate the image distance for first lens.
Write the expression for the thin lens equation for the second lens.
Here,
Rearrange the above equation to calculate the image distance for second lens.
Write the expression for the object distance for second lens.
Here,
Write the expression for object to image distance.
Here,
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the object to the final image distance is
(b)
The overall magnification of the system.
(b)

Explanation of Solution
Given:
The object distance for the first lens is
The image distance for the first lens is
The object distance for the second lens is
The image distance for the second lens is
Formula used:
Write the expression for the lateral magnification of the image formed by the first lens.
Here,
Write the expression for the lateral magnification of the image formed by the second lens.
Here,
Write the expression for the overall magnification for a system of two lenses.
Here,
Substitute
Calculation:
Substitute
Conclusion:
Thus, the overall magnification is
(c)
Whether the object is real or virtual and upright or inverted.
(c)

Explanation of Solution
Given:
The final image distance from the second lens is
The overall magnification for the system of two lenses is
Introduction:
A real image is formed by an object when all the outgoing parallel rays from the object are appeared to converge to a point. For positive image distance the image is real and for negative image distance the image is virtual.
The image distance,
Conclusion:
Thus, the image is real and inverted.
Want to see more full solutions like this?
Chapter 32 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
- Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forward
- How, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- Sketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardThe drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forward
- please solve everything in detailarrow_forward6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





