Physics (5th Edition)
5th Edition
ISBN: 9780134051802
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 32, Problem 77GP
(a)
To determine
The maximum Coulomb force exerted on the
α
particle.
(b)
To determine
The electric potential energy of the
α
particle at its point of closet approach.
(c)
To determine
The initial kinetic energy of the
α
particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute the gravitational and Coulomb force between two protons in 3He. Assume the distance between the protons is equal to the nuclear radius. The average nuclear potential energy is an attractive 40 MeV effective over a distance of 3.0 fm. Compare that energy with the potential energies associated with the gravitational and Coulomb forces at the same distance
ts) We can approximate the 232Th nucleus as a one-dimensional infinite square well
with length L equal to the nuclear radius R = R₁A¹/3, where Ro = 1.2 fm and A is the atomic
mass number.
(a) What is the length of this infinite square well? What is the ground state energy of a
proton (which has mass m₂ = 938.3 MeV/c²) in this infinite square well?
(b) 232Th has 90 protons and 142 neutrons. Assume that all these protons and neutrons
trapped in the infinite square well. How many energy levels of this infinite square well
contain protons? How many energy levels contain neutrons?
(1) Alpha particles of kinetic energy 6.250 MeV are scattered at 90° by a gold foil.
(a) What is the impact parameter?
(b) What is the minimum distance between the alpha particles and the gold nucleus?
(c) Find the kinetic and potential energies at that minimum distance.
Chapter 32 Solutions
Physics (5th Edition)
Ch. 32.1 - Prob. 1EYUCh. 32.2 - A given nucleus can decay by alpha decay, beta...Ch. 32.3 - Prob. 3EYUCh. 32.4 - Prob. 4EYUCh. 32.5 - Prob. 5EYUCh. 32.6 - Prob. 6EYUCh. 32.7 - Prob. 7EYUCh. 32.8 - Prob. 8EYUCh. 32.9 - Prob. 9EYUCh. 32 - Prob. 1CQ
Ch. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - Prob. 7CQCh. 32 - Prob. 8CQCh. 32 - Prob. 9CQCh. 32 - Prob. 1PCECh. 32 - Prob. 2PCECh. 32 - Prob. 3PCECh. 32 - Prob. 4PCECh. 32 - Prob. 5PCECh. 32 - Prob. 6PCECh. 32 - Prob. 7PCECh. 32 - Prob. 8PCECh. 32 - Prob. 9PCECh. 32 - Prob. 10PCECh. 32 - Prob. 11PCECh. 32 - Prob. 12PCECh. 32 - Prob. 13PCECh. 32 - Prob. 14PCECh. 32 - Prob. 15PCECh. 32 - Prob. 16PCECh. 32 - Prob. 17PCECh. 32 - Prob. 18PCECh. 32 - Prob. 19PCECh. 32 - Prob. 20PCECh. 32 - Prob. 21PCECh. 32 - Prob. 22PCECh. 32 - Prob. 23PCECh. 32 - Prob. 24PCECh. 32 - Prob. 25PCECh. 32 - Prob. 26PCECh. 32 - Prob. 27PCECh. 32 - Prob. 28PCECh. 32 - Suppose we were to discover that the ratio of...Ch. 32 - A radioactive sample is placed in a closed...Ch. 32 - Radon gas has a half-life of 3.82 d. What is the...Ch. 32 - Prob. 32PCECh. 32 - The number of radioactive nuclei in a particular...Ch. 32 - Prob. 34PCECh. 32 - Prob. 35PCECh. 32 - Prob. 36PCECh. 32 - Prob. 37PCECh. 32 - Prob. 38PCECh. 32 - Prob. 39PCECh. 32 - Prob. 40PCECh. 32 - Prob. 41PCECh. 32 - Prob. 42PCECh. 32 - Prob. 43PCECh. 32 - Prob. 44PCECh. 32 - Prob. 45PCECh. 32 - Prob. 46PCECh. 32 - Prob. 47PCECh. 32 - Prob. 48PCECh. 32 - Prob. 49PCECh. 32 - Prob. 50PCECh. 32 - Prob. 51PCECh. 32 - Prob. 52PCECh. 32 - Prob. 53PCECh. 32 - Prob. 54PCECh. 32 - Prob. 55PCECh. 32 - Consider a fusion reaction in which two deuterium...Ch. 32 - Prob. 57PCECh. 32 - Prob. 58PCECh. 32 - Prob. 59PCECh. 32 - Prob. 60PCECh. 32 - Prob. 61PCECh. 32 - Prob. 62PCECh. 32 - Prob. 63PCECh. 32 - Prob. 64PCECh. 32 - Prob. 65PCECh. 32 - Prob. 66PCECh. 32 - Prob. 67PCECh. 32 - Prob. 68GPCh. 32 - Prob. 69GPCh. 32 - Prob. 70GPCh. 32 - Prob. 71GPCh. 32 - Prob. 72GPCh. 32 - Prob. 73GPCh. 32 - Moon Rocks In one of the rocks brought back from...Ch. 32 - Prob. 75GPCh. 32 - Prob. 76GPCh. 32 - Prob. 77GPCh. 32 - Prob. 78GPCh. 32 - Prob. 79GPCh. 32 - Prob. 80GPCh. 32 - Prob. 81GPCh. 32 - Prob. 82GPCh. 32 - Prob. 83GPCh. 32 - Prob. 84GPCh. 32 - Prob. 85GPCh. 32 - Prob. 86GPCh. 32 - Prob. 87GPCh. 32 - Prob. 88GPCh. 32 - Prob. 89PPCh. 32 - Prob. 90PPCh. 32 - Prob. 91PP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Calculate the radius of 58Ni, one of the most tightly bound stable nuclei. (b) What is the ratio of the radius of 58Ni to that at 258Ha, one of the largest nuclei ever made? Note that the radius of the largest nucleus is still much smaller than ?le size of an atom.arrow_forwardA beam of alpha particles is incident on a target of lead. A particular alpha particle comes in “head-on” to a particular lead nucleu and stops 6.50 * 10-14 m away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of the alpha particle is 6.64 * 10-27 kg. (a) Calculate the electrostatic potential energy at the instant that the alpha particle stops. Express your result in joules and in MeV. (b) What initial kinetic energy (in joules and in MeV) did the alpha particle have? (c) What was the initial speed of the alpha particle?arrow_forwardA solid copper sphere whose radius is 1.0 cm has a verythin surface coating of nickel. Some of the nickel atoms areradioactive, each atom emitting an electron as it decays. Halfof these electrons enter the copper sphere, each depositing 100 keVof energy there.The other half of the electrons escape, each carryingaway a charge e.The nickel coating has an activity of 3.70 *10^8 radioactivedecays per second. The sphere is hung from a long, nonconductingstring and isolated from its surroundings. (a) How longwill it take for the potential of the sphere to increase by 1000 V? (b)How long will it take for the temperature of the sphere to increaseby 5.0 K due to the energy deposited by the electrons? The heatcapacity of the sphere is 14 J/K.arrow_forward
- Suppose the alpha particle in a Rutherford scattering experiment is replaced with a proton of the same initial kinetic energy and also headed directly toward the nucleus of the gold atom. (a) Will the distance from the center of the nucleus at which the proton stops be greater than, less than, or the same as that of the alpha particle? (b) If, instead, we switch the target to a nucleus with a larger value of Z, is the stopping distance of the alpha particle greater than, less than, or the same as with the gold target?arrow_forwardIn an alpha particle (42He) scattering experiment, using a thin gold (19779Au) foil, the initial kinetic energy of the alpha particle is 2.0MeV.(a.) What is the potential energy of the alpha particle/gold nucleus system at closest impact?(b.) Calculate the distance of closest approach. Compare this distance with the radius of the gold nucleus.arrow_forwardAn α-particle moving with initial kinetic energy K towards a nucleus of atomic number z approaches a distance ‘d’ at which it reverses its direction. Obtain the expression for the distance of closest approach ‘d’ in terms of the kinetic energy of α-particle K.arrow_forward
- Needs Complete typed solution with 100 % accuracy.arrow_forwardA projectile alpha particle is headed directly toward a target aluminum nucleus. Both objects are assumed to be spheres. What energy is required of the alpha particle if it is to momentarily stop just as its “surface” touches the “surface” of the aluminum nucleus? Assume that the target nucleus remains stationaryarrow_forwardWrite the mathematical expression for the radial probability function. The radial probability function for any orbital is zero at the nucleus, it also approaches zero at long distance from the nucleus. Explain why.arrow_forward
- Don't provide hand writing solutionarrow_forward1. A thin (1 mg/cm2) target of 48 Ca is bombarded with a 10 nA beam of a paarticles. A detector, with a solid angle of 0.0020 steradians., records 15 protons per second. If the angular distribution is isotropic, determine the total cross section (in mb) for the 48 Ca(a, p) reaction. Take the atomic mass of 48 Ca to be 48 u. hoourarrow_forwardConsider elastic scattering of electrons by a nucleus with charge distribution given by ( Included in image) where r represents the radial distance from the centre of the nucleus, ρ is a constant andR a reference radius. Calculate the form factor of the process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College