One-sided derivatives The right-sided and left-sided derivatives of a function at a point a are given by f + ′ ( a ) = lim h → 0 + f ( a + h ) − f ( a ) h a n d f − ′ ( a ) = lim h → 0 − f ( a + h ) − f ( a ) h , respectively, provided these limits exist. The derivative f ′( a ) exists if and only if f + ′( a ) = f − ′( a ) . a. Sketch the following functions. b. Compute f + ′( a ) and f − ′( a ) at the given point a. c. Is f continuous at a? Is f differentiable at a? 32. f ( x ) = { 4 − x 2 if x ≤ 1 2 x + 1 if x > 1 ; a = 1
One-sided derivatives The right-sided and left-sided derivatives of a function at a point a are given by f + ′ ( a ) = lim h → 0 + f ( a + h ) − f ( a ) h a n d f − ′ ( a ) = lim h → 0 − f ( a + h ) − f ( a ) h , respectively, provided these limits exist. The derivative f ′( a ) exists if and only if f + ′( a ) = f − ′( a ) . a. Sketch the following functions. b. Compute f + ′( a ) and f − ′( a ) at the given point a. c. Is f continuous at a? Is f differentiable at a? 32. f ( x ) = { 4 − x 2 if x ≤ 1 2 x + 1 if x > 1 ; a = 1
Solution Summary: The author illustrates the function f(x)=cc4-x
One-sided derivativesThe right-sided and left-sided derivatives of a function at a point a are given by
f
+
′
(
a
)
=
lim
h
→
0
+
f
(
a
+
h
)
−
f
(
a
)
h
a
n
d
f
−
′
(
a
)
=
lim
h
→
0
−
f
(
a
+
h
)
−
f
(
a
)
h
,
respectively, provided these limits exist. The derivative f′(a) exists if and only if f+′(a) = f−′(a).
a.Sketch the following functions.
b.Compute f+′(a) and f−′(a) at the given point a.
c.Is f continuous at a? Is f differentiable at a?
32.
f
(
x
)
=
{
4
−
x
2
if
x
≤
1
2
x
+
1
if
x
>
1
;
a
=
1
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Find the (exact) direction cosines and (rounded to 1 decimal place) direction angles of = (3,7,6)
Let a = (-1, -2, -3) and 6 = (-4, 0, 1).
Find the component of b onto a.
Forces of 9 pounds and 15 pounds act on each other with an angle of 72°.
The magnitude of the resultant force
The resultant force has an angle of
pounds.
* with the 9 pound force.
The resultant force has an angle of
with the 15 pound force.
It is best to calculate each angle separately and check by seeing if they add to 72°.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.