Concept explainers
A step-up transformer has a primary current of 32 A and an applied voltage of 240 V. The secondary coil has a current of 2 A. Assuming ideal transformer conditions, calculate the following:
a. Power input of the primary winding coil
b. Power output of the secondary winding coil
c. Secondary coil winding voltage
d. Turns ratio
(a)
The power input of primary winding coil assuming ideal transformer condition.
Answer to Problem 6RQ
The power input of primary winding coil assuming ideal transformer condition is
Explanation of Solution
Given information:
The primary winding current is
The secondary winding current is
The voltage applied to primary is
Write the expression for the power input of the primary winding coil assuming ideal transformer condition.
Here, the voltage in the primary winding is
Calculation:
Susbtitute
Conclusion:
Therefore, the power input of primary winding coil assuming ideal transformer condition is
(b)
The power output of the secondary winding coil assuming ideal transformer condition.
Answer to Problem 6RQ
The power output of secondary winding coil assuming ideal transformer condition is
Explanation of Solution
Given information:
The primary winding current is
The secondary winding current is
The voltage applied to primary is
The primary power and secondary power in an ideal transformer are always equal
Here, the primary power is
Calculation:
Susbtitute
Conclusion:
Therefore, the power output of secondary winding coil assuming ideal transformer condition is
(c)
The secondary coil winding voltage assuming ideal transformer condition.
Answer to Problem 6RQ
The secondary coil winding voltage assuming ideal transformer condition is
Explanation of Solution
Given information:
The primary winding current is
The secondary winding current is
The voltage applied to primary is
Write the expression for the secondary coil winding voltage assuming ideal transformer condition.
Here, the current in the secondary coil is
Calculation:
Substitute
Conclusion:
Therefore, the secondary coil winding voltage assuming ideal transformer condition is
(d)
The turns ratio assuming ideal transformer condition.
Answer to Problem 6RQ
The turns ratio assuming ideal transformer condition is
Explanation of Solution
Given information:
The primary winding current is
The secondary winding current is
The voltage applied to primary is
The turns ratio in a transformer is the ratio of the number of turns in the primary winding to number of turns in the secondary winding.
Here, the turns ratio is
Calculation:
Susbtitute
Conclusion:
Therefore, the turns ratio assuming ideal transformer condition is
Want to see more full solutions like this?
Chapter 3 Solutions
Connect 1 Semester Access Card For Electric Motors And Control Systems
- An RLE load is operating in chopper circuit from a 500 V de source as shown in Fig. (I) For R = 0, L = 0.064 and constant E, the duty cycle is 0.2 (a) Derive the expression for the lo(max) and lo(min) for type A chopper, supplying RLE load. Also, derive the expression for The maximum peak to peak ripple current. (b) Find the chopping frequency to limit the amplitude of load current excursion to 10 A. Fig.(1) www reeer Earrow_forwardQ1) An RLE load is operating in chopper circuit from a 500 V dc source as shown in Fig.(1) For R=0, L= 0.064 and constant E, the duty cycle is 0.2 (a) Derive the expression for the lo(max) and lo(min) for type A chopper, supplying RLE load. Also, derive the expression for The maximum peak to peak ripple current. (b) Find the chopping frequency to limit the amplitude of load current excursion to 10 A. Vs www R Fig.(1) Earrow_forward04) A converter is feeding an RL load as shown in Fig. 2 with Vs = 220 V, R = 52, L = 7.5 mH, f=1 kHz, d=0.5, and E=0 V. Calculate (a) the minimum instantaneous load current (b) the peak instantaneous load current, (c) the maximum peak-to-peak load ripple current, (d) the average value of load current la, (e) the rms load current lo, (f) the effective input resistance Ri seen by the source, (g) the rms chopper current, and (h) the critical value of the load inductance for continuous load current. Chopper FWD 500000 R Fig.2 LLarrow_forward
- - From these 2 truth tables (A and B), develop- The unsimplified function- Karnaugh's map- Simplified function- The schematic design of the circuit from the simplified function- The Circuit in Tinkercad from the simplified function (include Screenshots and Link circuits in Tinkercad)arrow_forwardBuild the respective truth tables, the Schematic Design of the unsimplified circuit, only with NAND logic gates, based on the following boolean functions: a) (X * Y)’ + Zb) ((A + B) * Z)’arrow_forwardDevelop the steps of Analog Digital Conversion (ADC) of the following analog signal, considering the signal sampling analog (gray square values), the quantization of the signal itself, the encoding of the quantization result in binary code and the resulting pulse train.arrow_forward
- Determine the values of the necessary resistances, design and run the circuit in TINKERCAD for an integrated 555 Astable with T1 (on time) of 8 seconds and a T2 (off time) of 4 seconds. The value for capacitor C1 must be 100 uF (0.0001 F).arrow_forward- What are Flip Flop circuits used for? Explain the operation of an R-S Flip Flop.- What function do Multiplexers or MUXs perform?arrow_forward- What function do Demultiplexers or DEMUX perform?- According to the implementation of automation circuits with ARDUINO boards, what would they be, Conceptually, the main components of any system of automation? Draw a representative schematic or block diagram.arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning