In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = ( x − 2 ) 2 ( x + 4 ) ( x − 1 )
In Exercises 41-64, a. Use the Leading Coefficient Test to determine the graph’s end behavior. b. Find the x-intercepts. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each intercept. c. Find the y-intercept. d. Determine whether the graph has y-axis symmetry, origin symmetry, or neither. e. If necessary, find a few additional points and graph the function. Use the maximum number of turning points to check whether it is drawn correctly. f ( x ) = ( x − 2 ) 2 ( x + 4 ) ( x − 1 )
Solution Summary: The author explains how the graph of the polynomial rises to both sides. The highest power of f(x) is 4 (even) and the coefficient of higher power term is positive.
Solve questions by Course Name (Ordinary Differential Equations II 2)
please Solve questions by Course Name( Ordinary Differential Equations II 2)
InThe Northern Lights are bright flashes of colored light between 50 and 200 miles above Earth.
Suppose a flash occurs 150 miles above Earth. What is the measure of arc BD, the portion of Earth
from which the flash is visible? (Earth’s radius is approximately 4000 miles.)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Interpreting Graphs of Quadratic Equations (GMAT/GRE/CAT/Bank PO/SSC CGL) | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=BHgewRcuoRM;License: Standard YouTube License, CC-BY
Solve a Trig Equation in Quadratic Form Using the Quadratic Formula (Cosine, 4 Solutions); Author: Mathispower4u;https://www.youtube.com/watch?v=N6jw_i74AVQ;License: Standard YouTube License, CC-BY