EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
1st Edition
ISBN: 9781337684668
Author: Katz
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 32, Problem 62PQ
To determine

The difference between the two rotations and check whether they are indistinguishable.

Expert Solution & Answer
Check Mark

Answer to Problem 62PQ

When the coil is parallel to the field and is rotated to a position where it is perpendicular to the field, the emf induced is found to be negative. The emf is found to be positive, when the coil is rotated back to its initial position. Both the rotations are distinguishable.

Explanation of Solution

Faraday’s law states that, when the magnetic flux changes an emf is induced in the coil.

The direction of the induced emf is given by Lenz law. Lenz law states that the change in flux is opposed by the current induced in the circuit due to a change in magnetic field. The current induced in the circuit, exerts a mechanical force as well.

Write the expression for induced emf from Faraday’s and Lenz law.

    ε=dϕBdt                                                                                                            (I)

Here, ε is the induced emf, ϕB is the magnetic flux linked with the coil and t is the time during which the flux linked with the coil changes.

Write the expression for magnetic flux.

    ϕB=BA

Here, B is the strength of magnetic field and A is the area vector of the coil.

Write the expression for magnitude of the vector A.

    A=πr2

Here, A is the area of the loop and r is the radius of the coil.

Write the expression for magnitude of the magnetic flux.

    ϕB=BAcosθ

Here, B is the magnetic field and θ is the angle between B and A.

Write the expression for initial flux linked with the coil.

    (ϕB)i=BAcosθi

Here, θi is the initial angle between B and A.

Substitute 90.0° for θi in the above equation to find (ϕB)i.

    (ϕB)i=BAcos90.0°=0

Write the expression for final flux linked with the coil.

    (ϕB)f=BAcosθf

Here, (ϕB)f is the flux linked with the coil after it is rotated by an angle of 90° and θf is the final angle between the vectors B and A.

Substitute 0° for θf in the above equation to find (ϕB)f.

    (ϕB)f=BAcos0°=BA

Substitute πr2 for A in the above equation to find (ϕB)f.

    (ϕB)f=B(πr2)                                                                                                      (II)

Write the equation for change in magnetic flux.

    dϕB=(ϕB)f(ϕB)i                                                                                              (III)

The coil is now rotated back to its initial position. The coil now rotates from the position where the magnetic flux linked with it is 0.294Tm2, to the final position when the flux linked with it becomes 0.

Therefore, dϕB=dϕB.

Write the expression for induced emf due to second rotation.

    ε=dϕBdt                                                                                                           (IV)

Conclusion:

Substitute 1.50T for B and 0.25m for r in equation (II) to find (ϕB)f.

    (ϕB)f=1.50T×3.14×0.25m2=0.294Tm2

Substitute 0.294Tm2 for (ϕB)f and 0 for (ϕB)f in equation (III) to find dϕB.

    dϕB=0.294Tm20=0.294Tm2

Substitute 0.294Tm2 for dϕB and 0.200s for dt in equation (I) to find ε.

    ε=0.294Tm20.200s=1.470V

Therefore, the current in the coil flows in the counter clockwise direction.

Substitute 0.294Tm2 for dϕB and 0.200s for dt in equation (IV) to find ε.

    ε=(0.294Tm2)0.200s=1.470V

The induced current flows in the clockwise direction.

Therefore, when the coil is parallel to the field and is rotated to a position where it is perpendicular to the field, the emf induced is found to be negative. The emf is found to be positive, when the coil is rotated back to its initial position. Both the rotations are distinguishable.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A uniform, thin rod hangs vertically at rest from a frictionless axle attached to its top end. The rod has a mass of 0.780 kg and a length of 1.54 m. (Assume a coordinate system where the +y-direction is up and the +x-direction is to the right. The rod is free to swing about the axle in the x- y plane.) (a) You take a hammer and strike the bottom end of the rod. At the instant the hammer strikes, the force it applies to the rod is (15.71) N. What is the acceleration (in m/s²) of the rod's center of mass at this instant? (Express your answer in vector form.) m/s² a = (b) What is the horizontal force (in N) that the axle exerts on the rod at this same instant? (Express your answer in vector form.) F = N (c) The rod then returns to hanging at rest. You again strike the rod with the hammer, applying the same force, but now you strike it at its midpoint. What now is the acceleration of the center of mass (in m/s²) at the instant of impact? (Express your answer in vector form.) m/s² a = (d)…
Find the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 9.00 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.) N.m 10.0 N 30.0% 12.0 N 9.00 N
An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 16.5 cm Sidewall Ο 30.5 cm Tread i Enter a number. Find the moment of inertia of the sidewall and the moment of inertia of the tread region. Each can be modeled as a cylinder of nonzero thickness. What is the inner and outer radius for each case? What is the formula for the moment of inertia for a thick-walled cylinder? How can you find the mass of a hollow cylinder?…

Chapter 32 Solutions

EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC

Ch. 32 - Prob. 2PQCh. 32 - Prob. 3PQCh. 32 - Prob. 4PQCh. 32 - Prob. 5PQCh. 32 - Figure P32.6 shows three situations involving a...Ch. 32 - A rectangular loop of length L and width W is...Ch. 32 - The magnetic field through a square loop of wire...Ch. 32 - Prob. 9PQCh. 32 - Prob. 10PQCh. 32 - Suppose a uniform magnetic field is perpendicular...Ch. 32 - Prob. 12PQCh. 32 - A square conducting loop with side length a = 1.25...Ch. 32 - A The magnetic field in a region of space is given...Ch. 32 - A The magnetic field in a region of space is given...Ch. 32 - Prob. 16PQCh. 32 - Prob. 17PQCh. 32 - Prob. 18PQCh. 32 - A square loop with side length 5.00 cm is on a...Ch. 32 - A thin copper rod of length L rotates with...Ch. 32 - Figure P32.21 shows a circular conducting loop...Ch. 32 - Prob. 22PQCh. 32 - A square loop with side length L, mass M, and...Ch. 32 - Prob. 24PQCh. 32 - Prob. 25PQCh. 32 - Prob. 26PQCh. 32 - Prob. 27PQCh. 32 - A solenoid of area Asol produces a uniform...Ch. 32 - Two circular conductors are perpendicular to each...Ch. 32 - Two circular conducting loops labeled A and B are...Ch. 32 - Prob. 31PQCh. 32 - Prob. 32PQCh. 32 - Prob. 33PQCh. 32 - Prob. 34PQCh. 32 - Prob. 35PQCh. 32 - Find an expression for the current in the slide...Ch. 32 - The slide generator in Figure 32.14 (page 1020) is...Ch. 32 - Prob. 38PQCh. 32 - A thin conducting bar (60.0 cm long) aligned in...Ch. 32 - A stiff spring with a spring constant of 1200.0...Ch. 32 - A generator spinning at a rate of 1.20 103...Ch. 32 - Suppose you have a simple homemade AC generator...Ch. 32 - Prob. 43PQCh. 32 - Prob. 44PQCh. 32 - Prob. 45PQCh. 32 - Prob. 46PQCh. 32 - A square coil with a side length of 12.0 cm and 34...Ch. 32 - Prob. 48PQCh. 32 - Prob. 49PQCh. 32 - Prob. 50PQCh. 32 - Prob. 51PQCh. 32 - Prob. 52PQCh. 32 - Prob. 53PQCh. 32 - Prob. 54PQCh. 32 - Prob. 55PQCh. 32 - Prob. 56PQCh. 32 - Prob. 57PQCh. 32 - A step-down transformer has 65 turns in its...Ch. 32 - Prob. 59PQCh. 32 - Prob. 60PQCh. 32 - Prob. 61PQCh. 32 - Prob. 62PQCh. 32 - Prob. 63PQCh. 32 - A bar magnet is dropped through a loop of wire as...Ch. 32 - Prob. 65PQCh. 32 - Prob. 66PQCh. 32 - A circular coil with 75 turns and radius 12.0 cm...Ch. 32 - Each of the three situations in Figure P32.68...Ch. 32 - A square loop with sides 1.0 m in length is placed...Ch. 32 - Prob. 70PQCh. 32 - Two frictionless conducting rails separated by l =...Ch. 32 - Imagine a glorious day after youve finished...Ch. 32 - Prob. 73PQCh. 32 - A Figure P32.74 shows an N-turn rectangular coil...Ch. 32 - A rectangular conducting loop with dimensions w =...Ch. 32 - Prob. 76PQCh. 32 - A conducting rod is pulled with constant speed v...Ch. 32 - Prob. 78PQCh. 32 - A conducting single-turn circular loop with a...Ch. 32 - A metal rod of mass M and length L is pivoted...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY