Concept explainers
(a)
The distance between the object and the final image.
(a)
Explanation of Solution
Given:
The distance of an object is
The focal length of the lens is
The focal length of a second lens is
The distance of the second lens is
Formula used:
Draw a ray diagram to show the image distance and its properties.
Write the expression for the thin lens equation for the first lens.
Here,
Rearrange the above equation to calculate the image distance for first lens.
Write the expression for the thin lens equation for the second lens.
Here,
Rearrange the above equation to calculate the image distance for second lens.
Write the expression for the object distance for second lens.
Here,
Write the expression for object to image distance.
Here,
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the object to the final image distance is
(b)
The overall magnification of the system.
(b)
Explanation of Solution
Given:
The object distance for the first lens is
The image distance for the first lens is
The object distance for the second lens is
The image distance for the second lens is
Formula used:
Write the expression for the lateral magnification of the image formed by the first lens.
Here,
Write the expression for the lateral magnification of the image formed by the second lens.
Here,
Write the expression for the overall magnification for a system of two lenses.
Here,
Substitute
Calculation:
Substitute
Conclusion:
Thus, the overall magnification is
(c)
Whether the object is real or virtual and upright or inverted.
(c)
Explanation of Solution
Given:
The final image distance from the second lens is
The overall magnification for the system of two lenses is
Introduction:
A real image is formed by an object when all the outgoing parallel rays from the object are appeared to converge to a point. For positive image distance the image is real and for negative image distance the image is virtual.
The image distance,
Conclusion:
Thus, the image is real and inverted.
Want to see more full solutions like this?
Chapter 32 Solutions
Physics for Scientists and Engineers
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning