For Exercises 67–73 , assume that f is differentiable over ( − ∞ , ∞ ) . Classify each of the following statements as either true or false. If a statement is false, explain why. If f has exactly two critical values at x = a and x = b , where a < b , then there must exist exactly one point of inflection at x = c such that a < c < b . In other words, exactly one point of inflection must exist between any two critical points.
For Exercises 67–73 , assume that f is differentiable over ( − ∞ , ∞ ) . Classify each of the following statements as either true or false. If a statement is false, explain why. If f has exactly two critical values at x = a and x = b , where a < b , then there must exist exactly one point of inflection at x = c such that a < c < b . In other words, exactly one point of inflection must exist between any two critical points.
Solution Summary: The author explains that the provided statement is false because the function f may have more than one inflection point.
For Exercises 67–73, assume that f is differentiable over
(
−
∞
,
∞
)
. Classify each of the following statements as either true or false. If a statement is false, explain why.
If
f
has exactly two critical values at
x
=
a
and
x
=
b
, where
a
<
b
, then there must exist exactly one point of inflection at
x
=
c
such that
a
<
c
<
b
. In other words, exactly one point of inflection must exist between any two critical points.
3.
Consider the sequences of functions fn: [-T, π] → R,
sin(n²x)
n(2)
n
(i) Find a function f : [-T, π] R such that fnf pointwise as
n∞. Further, show that f uniformly on [-T,π] as n→ ∞.
[20 Marks]
(ii) Does the sequence of derivatives f(x) has a pointwise limit on [-7,π]?
Justify your answer.
[10 Marks]
Good Day,
Please assist with the following.
Regards,
For each given function f(x) find f'(x) using the rules learned in section 9.5.
1. f(x)=x32
32x
2. f(x)=7x+13
3. f(x) =
x4
4. f(x) = √√x³
5. f(x) = 3x²+
3
x2
Chapter 3 Solutions
Pearson eText Calculus and Its Applications, Brief Edition -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.