In Exercises 91–96 , the graph of a derivative f ′ is shown. Use the information in each graph to determine where f is increasing or decreasing and the x -values of any extrema. Then sketch a possible graph of f . Increasing on ( − ∞ , 2 ) , decreasing on ( 2 , ∞ ) , relative minimum at x = 2 .
In Exercises 91–96 , the graph of a derivative f ′ is shown. Use the information in each graph to determine where f is increasing or decreasing and the x -values of any extrema. Then sketch a possible graph of f . Increasing on ( − ∞ , 2 ) , decreasing on ( 2 , ∞ ) , relative minimum at x = 2 .
Solution Summary: The author analyzes the graph of the derivative function fprime and determines whether the function is decreasing or increasing.
In Exercises 91–96, the graph of a derivative
f
′
is shown. Use the information in each graph to determine where f is increasing or decreasing and the x-values of any extrema. Then sketch a possible graph of
f
.
Increasing on
(
−
∞
,
2
)
, decreasing on
(
2
,
∞
)
, relative minimum at
x
=
2
.
4. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.024.
Find the approximations Tη, Mn, and S, to the integral
computer algebra system.)
ASK YOUR TEACHER
PRACTICE ANOTHER
4 39
√
dx for n = 6 and 12. Then compute the corresponding errors ET, EM, and Es. (Round your answers to six decimal places. You may wish to use the sum command on a
n
Tn
Mn
Sp
6
12
n
ET
EM
Es
6
12
What observations can you make? In particular, what happens to the errors when n is doubled?
As n is doubled, ET and EM are decreased by a factor of about
Need Help?
Read It
'
and Es is decreased by a factor of about
6. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.5.001.
ASK YOUR TEACHER
PRACTICE ANOTHER
Let I =
4
f(x) dx, where f is the function whose graph is shown.
= √ ² F(x
12
4
y
f
1
2
(a) Use the graph to find L2, R2 and M2.
42 =
R₂ =
M₂ =
1
x
3
4
practice problem please help!
Chapter 3 Solutions
Pearson eText Calculus and Its Applications, Brief Edition -- Instant Access (Pearson+)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.