
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 32, Problem 4CQ
To determine
(a)
The crossover frequency in the case, the resistance R is doubled.
To determine
(b)
The crossover frequency in the case, the capacitance C is doubled.
To determine
(c)
The crossover frequency in the case, the peak emf
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X.
904
80-
70-
60-
50-
I/MA
40-
30-
20-
10-
0+
0
0.5
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VIV
Component X and a cell of negligible internal resistance are placed in a circuit.
A variable resistor R is connected in series with component X. The ammeter reads 20mA.
4.0V
4.0V
Component X and the cell are now placed in a potential divider circuit.
(a) Outline why component X is considered non-ohmic. [1]
(b(i)) Determine the resistance of the variable resistor. [3]
(b(ii)) Calculate the power dissipated in the circuit. [1]
(c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider
is moved from Q to P. [1]
(c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider
arrangement over the arrangement in (b).
Chapter 32 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 32 - Prob. 1CQCh. 32 - Prob. 2CQCh. 32 - Prob. 3CQCh. 32 - Prob. 4CQCh. 32 - Prob. 5CQCh. 32 - Prob. 6CQCh. 32 - Prob. 7CQCh. 32 - The resonance frequency of a series RLC circuit is...Ch. 32 - Prob. 9CQCh. 32 - Prob. 10CQ
Ch. 32 - Prob. 1EAPCh. 32 - Prob. 2EAPCh. 32 - A 110Hz source of emf has a peak voltage of 50V ....Ch. 32 - Prob. 4EAPCh. 32 - Prob. 5EAPCh. 32 - Prob. 6EAPCh. 32 - Prob. 7EAPCh. 32 - Prob. 8EAPCh. 32 - Prob. 9EAPCh. 32 - Prob. 10EAPCh. 32 - Prob. 11EAPCh. 32 - Prob. 12EAPCh. 32 - Prob. 13EAPCh. 32 - Prob. 14EAPCh. 32 - A high-pass RC filter is connected to an AC source...Ch. 32 - Prob. 16EAPCh. 32 - Prob. 17EAPCh. 32 - A low-pass filter consists of a 100F capacitor in...Ch. 32 - What are VRand VCif the emf frequency in FIGURE...Ch. 32 - A high-pass filter consists of a 1.59F capacitor...Ch. 32 - An electric circuit, whether it’s a simple...Ch. 32 - A 20mH inductor is connected across an AC...Ch. 32 - The peak current through an inductor is 10mA ....Ch. 32 - Prob. 24EAPCh. 32 - Prob. 25EAPCh. 32 - An inductor has a peak current of 330A when the...Ch. 32 - A series RLC circuit has a 200kHz resonance...Ch. 32 - Prob. 28EAPCh. 32 - Prob. 29EAPCh. 32 - A series RLC circuit consists of a 50 resistor, a...Ch. 32 - At what frequency f do a 1.0F capacitor and a 1.0H...Ch. 32 - Prob. 32EAPCh. 32 - Prob. 33EAPCh. 32 - The heating element of a hair drier dissipates...Ch. 32 - A resistor dissipates 2.0W when the rms voltage of...Ch. 32 - 36. For what absolute value of the phase angle...Ch. 32 - The motor of an electric drill draws a 3.5Arms...Ch. 32 - Prob. 38EAPCh. 32 - Prob. 39EAPCh. 32 - Prob. 40EAPCh. 32 - Prob. 41EAPCh. 32 - Prob. 42EAPCh. 32 - Prob. 43EAPCh. 32 - Prob. 44EAPCh. 32 - Prob. 45EAPCh. 32 - Prob. 46EAPCh. 32 - Prob. 47EAPCh. 32 - Prob. 48EAPCh. 32 - Use a phasor diagram to analyze the RL circuit of...Ch. 32 - A series RL circuit is built with a 110 resistor...Ch. 32 - A series RLC circuit consists of a 75 resistor, a...Ch. 32 - Prob. 52EAPCh. 32 - Prob. 53EAPCh. 32 - Prob. 54EAPCh. 32 - Prob. 55EAPCh. 32 - Prob. 56EAPCh. 32 - Prob. 57EAPCh. 32 - Prob. 58EAPCh. 32 - Prob. 59EAPCh. 32 - The tuning circuit in an FM radio receiver is a...Ch. 32 - A television channel is assigned the frequency...Ch. 32 - Prob. 62EAPCh. 32 - Prob. 63EAPCh. 32 - Prob. 64EAPCh. 32 - Prob. 65EAPCh. 32 - Prob. 66EAPCh. 32 - A motor attached to a 120V/60Hz power line draws...Ch. 32 - Prob. 68EAPCh. 32 - Prob. 69EAPCh. 32 - Prob. 70EAPCh. 32 - Prob. 71EAPCh. 32 - Consider the parallel RLC circuit shown in FIGURE...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forward
- Describe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forward
- A-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY