PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
10th Edition
ISBN: 9781337888721
Author: SERWAY
Publisher: CENGAGE L
bartleby

Videos

Question
Book Icon
Chapter 32, Problem 43AP

(a)

To determine

The inductive reactance in the circuit.

(a)

Expert Solution
Check Mark

Answer to Problem 43AP

The inductive reactance in the circuit is 78.5Ω .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the inductive reactance of the circuit is,

XL=2πfL

Here,

XL is the inductive reactance of the circuit.

f is the frequency of the source.

L is the inductance of the inductor.

Substitute 50.0Hz for f and 0.250H for L to find XL .

XL=2π×50.0Hz×0.250H=78.5Ω

Conclusion:

Therefore, the inductive reactance in the circuit is 78.5Ω .

(b)

To determine

The capacitive reactance in the circuit.

(b)

Expert Solution
Check Mark

Answer to Problem 43AP

The capacitive reactance in the circuit is 1.59 .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the inductive reactance of the circuit is,

XC=12πfC

Here,

XC is the inductive reactance of the circuit.

f is the frequency of the source.

C is the capacitance of the capacitor.

Substitute 50.0Hz for f and 2.00μF for C to find XC .

XC=12π×50.0Hz×2.00μF×106F1μF=1.59×103Ω×1031Ω=1.59

Conclusion:

Therefore, the capacitive reactance in the circuit is 1.59 .

(c)

To determine

The impedance in the circuit.

(c)

Expert Solution
Check Mark

Answer to Problem 43AP

The impedance in the circuit is 1.52 .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the impedance circuit is,

Z=R2+(XLXC)2

Here,

Z is the impedance in the circuit.

R is the resistance in the circuit.

Substitute 150Ω for R , 78.5Ω for XL and 1.59 for XC to find Z .

Z=(150Ω)2+(78.5Ω1.59×1031Ω)2=2307132.25Ω2=1.52×103Ω×1031Ω=1.52

Conclusion:

Therefore, the impedance in the circuit is 1.52 .

(d)

To determine

The maximum current in the circuit.

(d)

Expert Solution
Check Mark

Answer to Problem 43AP

The maximum current in the circuit is 138mA .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the maximum current in the circuit is,

Imax=ΔVmaxZ

Here,

Imax is the maximum current in the circuit.

ΔVmax is the maximum source voltage.

Substitute 1.52 for Z and 210V for ΔVmax to find Imax .

Imax=210V1.52=0.138A×103mA1A=138mA

Conclusion:

Therefore, the maximum current in the circuit is 138mA .

(e)

To determine

The phase angle between the current and the source voltage.

(e)

Expert Solution
Check Mark

Answer to Problem 43AP

The phase angle between the current and the source voltage is 84.3° .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the phase angle is,

ϕ=tan1(XLXCR)

Here,

ϕ is the phase angle between the current and the source voltage.

Substitute 150Ω for R , 78.5Ω for XL and 1.59 for XC to find ϕ .

ϕ=tan1(78.5Ω1.59150Ω)=tan1(10.07)=84.3°

Conclusion:

Therefore, the phase angle between the current and the source voltage is 84.3° .

(f)

To determine

The power factor for the circuit.

(f)

Expert Solution
Check Mark

Answer to Problem 43AP

The power factor for the circuit is 0.0987 .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the power factor for the circuit is,

powerfactor=cosϕ

Substitute 84.3° for ϕ to find powerfactor .

powerfactor=cos(84.3°)=0.0987

Conclusion:

Therefore, the power factor for the circuit is 0.0987 .

(g)

To determine

The power input to the circuit.

(g)

Expert Solution
Check Mark

Answer to Problem 43AP

The power input to the circuit is 1.43W .

Explanation of Solution

Given info: The value of resistance is 150Ω , value of inductance is 0.250H , value of capacitance is 2.00μF , frequency is 50.0Hz and source with 210V .

Formula to calculate the power input to the circuit is,

P=(ΔVrms)2Zcosϕ (1)

Write the expression for the rms voltage.

ΔVrms=ΔVmax2

Here,

ΔVrms is the rms voltage to the circuit.

Replace (ΔVmax/2) by ΔVrms in equation (1).

P=(ΔVmax/2)2Zcosϕ

Substitute 210V for ΔVmax , 1.52 for Z and 0.0987 for cosϕ to find P .

P=(210V21.52×103Ω1)(0.0987)=W×0.0987=1.43W

Conclusion:

Therefore, the power input to the circuit is 1.43W .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Snoop Dogg, in an effort to get laid back (with his mind on his money and his money on his mind) pours himself a gin and juice.  He mixes 0.124 kg (about 3 shots) of gin with 0.576 kg (about a pint) of orange juice. The gin starts at 20.0˚C, room temperature. The juice is refrigerated and starts at 2.89 ˚C. What is the final temperature after mixing of the gin and juice? The specific heat of gin is 3460 J/kg˚C and the specific heat of orange juice is 3730 J/kg˚C.
A sword is heated up to 226 °C, it is put into a nearby barrel of water that is at 18.4 °C.  What mass of water would be needed to cool the sword to 30.0˚C, bringing the system to thermal equilibrium?  The sword is 35.4 kg and is made of steel. The specific heat of water is = 4186 J/kg ˚C. The specific heat of steel is = 502 J/kg ˚C
You are planning on installing a new above-ground swimming pool in your backyard. The pool will be rectangular with dimensions 32.0 m x 10.0 m. It will be filled with fresh water to a depth of 2.20 m. In order to provide the appropriate structural support, you wish to determine the following. (a) Determine the force exerted on the bottom of the pool by the water (in N). (No Response) N (b) Determine the force exerted on each end of the pool by the water (in N). (Assume the end is the 10.0 m wall.) (No Response) N (c) Determine the force exerted on each side of the pool by the water (in N). (Assume the side is the 32.0 m wall.) (No Response) N (d) You wish to have swimming parties with your children and grandchildren. At a given time, you might have 23 people with an average mass of 75.0 kg in the pool. You need to determine if such parties will affect your calculations for the required strength of materials supporting your pool. The parties will not affect the required strength since…

Chapter 32 Solutions

PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)

Ch. 32 - Figure P32.4 shows three lightbulbs connected to a...Ch. 32 - In the AC circuit shown in Figure P32.3, R = 70.0 ...Ch. 32 - In a purely inductive AC circuit as shown in...Ch. 32 - Prob. 7PCh. 32 - A 20.0-mH inductor is connected to a North...Ch. 32 - An AC source has an output rms voltage of 78.0 V...Ch. 32 - Review. Determine the maximum magnetic flux...Ch. 32 - A 1.00-mF capacitor is connected to a North...Ch. 32 - An AC source with an output rms voltage of 86.0 V...Ch. 32 - What is the maximum current in a 2.20-F capacitor...Ch. 32 - A capacitor C is connected to a power supply that...Ch. 32 - In addition to phasor diagrams showing voltages...Ch. 32 - An AC source with Vmax = 150 V and f = 50.0 Hz is...Ch. 32 - You are working in a factory and have been tasked...Ch. 32 - Prob. 18PCh. 32 - An RLC circuit consists of a 150- resistor, a...Ch. 32 - A 60.0-ft resistor is connected in series with a...Ch. 32 - A series RLC circuit has a resistance of 45.0 and...Ch. 32 - Prob. 22PCh. 32 - A series RLC circuit has a resistance of 22.0 and...Ch. 32 - An AC voltage of the form v = 90.0 sin 350t, where...Ch. 32 - The LC circuit of a radar transmitter oscillates...Ch. 32 - A series RLC circuit has components with the...Ch. 32 - You wish to build a series RLC circuit for a...Ch. 32 - A 10.0- resistor, 10.0-mH inductor, and 100-F...Ch. 32 - A resistor R, inductor L, and capacitor C are...Ch. 32 - The primary coil of a transformer has N1 = 350...Ch. 32 - A person is working near the secondary of a...Ch. 32 - A transmission line that has a resistance per unit...Ch. 32 - Prob. 33APCh. 32 - A 400- resistor, an inductor, and a capacitor are...Ch. 32 - Energy is to be transmitted over a pair of copper...Ch. 32 - Energy is to be transmitted over a pair of copper...Ch. 32 - A transformer may be used to provide maximum power...Ch. 32 - Show that the rms value for the sawtooth voltage...Ch. 32 - Marie Cornu, a physicist at the Polytechnic...Ch. 32 - A series RLC circuit has resonance angular...Ch. 32 - Review. One insulated conductor from a household...Ch. 32 - (a) Sketch a graph of the phase angle for an RLC...Ch. 32 - Prob. 43APCh. 32 - Review. In the circuit shown in Figure P32.44,...Ch. 32 - You have decided to build your own speaker system...Ch. 32 - A series RLC circuit is operating at 2.00 103 Hz....Ch. 32 - You are trying to become a member of the Physics...Ch. 32 - A series RLC circuit in which R = l.00 , L = 1.00...Ch. 32 - The resistor in Figure P32.49 represents the...Ch. 32 - An 80.0- resistor and a 200-mH inductor are...Ch. 32 - Prob. 51CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Introduction To Alternating Current; Author: Tutorials Point (India) Ltd;https://www.youtube.com/watch?v=0m142qAZZpE;License: Standard YouTube License, CC-BY