Concept explainers
a)
To find standard deviation for each type of investment
a)

Answer to Problem 42E
Standard deviation for each type of investments:
Stocks: 15.39
Bills: 2.11
Bonds: 8.58
Explanation of Solution
Formula:
Population standard deviation:
Calculation:
Stocks:
Creating table for finding standard deviation:
26.01 | 18.46 | 340.77 |
22.64 | 15.09 | 227.71 |
16.1 | 8.55 | 73.10 |
25.22 | 17.67 | 312.23 |
-6.18 | -13.73 | 188.51 |
-7.1 | -14.65 | 214.62 |
-16.76 | -24.31 | 590.98 |
25.32 | 17.77 | 315.77 |
3.15 | -4.4 | 19.36 |
-0.61 | -8.16 | 66.59 |
16.29 | 8.74 | 76.39 |
6.43 | -1.12 | 1.25 |
-33.84 | -41.39 | 1713.13 |
18.82 | 11.27 | 127.01 |
11.02 | 3.47 | 12.04 |
5.53 | -2.02 | 4.08 |
7.26 | -0.29 | 0.08 |
26.5 | 18.95 | 359.10 |
7.52 | -0.03 | 0.00 |
-2.23 | -9.78 | 95.65 |
Here n = 20
Values of Xi are return from stock.
Putting all values in formula of mean,
From table,
Put all values in the formula of population standard deviation,
Bills:
Creating table for finding standard deviation:
5.02 | 2.66 | 7.06 |
5.05 | 2.69 | 7.22 |
4.73 | 2.37 | 5.60 |
4.51 | 2.15 | 4.61 |
5.76 | 3.40 | 11.54 |
3.67 | 1.31 | 1.71 |
1.66 | -0.70 | 0.49 |
1.03 | -1.33 | 1.78 |
1.23 | -1.13 | 1.28 |
3.01 | 0.65 | 0.42 |
4.68 | 2.32 | 5.37 |
4.64 | 2.28 | 5.18 |
1.59 | -0.77 | 0.60 |
0.14 | -2.22 | 4.94 |
0.13 | -2.23 | 4.99 |
0.03 | -2.33 | 5.44 |
0.05 | -2.31 | 5.35 |
0.07 | -2.29 | 5.26 |
0.05 | -2.31 | 5.35 |
0.21 | -2.15 | 4.64 |
Here n = 20
Values of Xi are return from bills.
Putting all values in formula of mean,
From table,
Put all values in the formula of population standard deviation,
Bonds:
Creating table for finding standard deviation:
1.43 | -4.30 | 18.52 |
9.94 | 4.21 | 17.69 |
14.92 | 9.19 | 84.38 |
-8.25 | -13.98 | 195.55 |
16.66 | 10.93 | 119.38 |
5.57 | -0.16 | 0.03 |
15.12 | 9.39 | 88.10 |
0.38 | -5.35 | 28.67 |
4.49 | -1.24 | 1.55 |
2.87 | -2.86 | 8.20 |
1.96 | -3.77 | 14.24 |
10.21 | 4.48 | 20.03 |
20.1 | 14.37 | 206.38 |
-11.12 | -16.85 | 284.06 |
8.46 | 2.73 | 7.43 |
16.04 | 10.31 | 106.21 |
2.97 | -2.76 | 7.64 |
-9.1 | -14.83 | 220.05 |
10.75 | 5.02 | 25.16 |
1.28 | -4.45 | 19.84 |
Here n = 20
Values of Xi are return from bonds.
Putting all values in formula of mean,
From table,
Put all values in the formula of population standard deviation,
Here, Population standard deviation for each type of investments:
Stocks: 15.39
Bills: 2.11
Bonds: 8.58
There is highest population standard deviation for Stocks, which leading high risk.
There are is low standard deviation for Bills, which leading least risk
b)
To justify results with finance theory
b)

Explanation of Solution
Given:
Bills are short-term loans and Bonds are long-term loans to the U.S. government.
As per finance theory, Long term loans are riskier than short term loans.
Justification:
Population standard deviation of Bills = 2.11
Population standard deviation of Bonds = 8.58
Here, Population standard deviation of Bonds is greater than Bills. That means Loans from Bonds are riskier than Bills. This result agrees with finance theory
c)
To find mean for each type of investment
c)

Explanation of Solution
Given:
As per finance theory, the more risk of an investment has, higher their mean must be.
Formula:
Mean:
Calculation:
Stocks:
Here n = 20
Values of Xi are return from stock.
Putting all values in formula of mean,
Bills:
Here n = 20
Values of Xi are return from bills.
Putting all values in formula of mean,
Bonds:
Here n = 20
Values of Xi are return from bonds.
Putting all values in formula of mean,
From all calculations,
Mean for each type of investment:
Stocks:7.55
Bills:2.36
Bonds:5.73
There is highest mean for Stocks, which leading high risk.
There are is low mean for Bills, which leading least risk.
The results from population standard deviation and finance theory are same as from mean of an investment. Hence, this result agrees with finance theory
Want to see more full solutions like this?
Chapter 3 Solutions
ELEM.STATS>LL<W/CONNECT-FD
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward3. Consider the following regression model: Yi Bo+B1x1 + = ···· + ßpxip + Єi, i = 1, . . ., n, where are i.i.d. ~ N (0,0²). (i) Give the MLE of ẞ and σ², where ẞ = (Bo, B₁,..., Bp)T. (ii) Derive explicitly the expressions of AIC and BIC for the above linear regression model, based on their general formulae.arrow_forwardHow does the width of prediction intervals for ARMA(p,q) models change as the forecast horizon increases? Grows to infinity at a square root rate Depends on the model parameters Converges to a fixed value Grows to infinity at a linear ratearrow_forward
- Consider the AR(3) model X₁ = 0.6Xt-1 − 0.4Xt-2 +0.1Xt-3. What is the value of the PACF at lag 2? 0.6 Not enough information None of these values 0.1 -0.4 이arrow_forwardSuppose you are gambling on a roulette wheel. Each time the wheel is spun, the result is one of the outcomes 0, 1, and so on through 36. Of these outcomes, 18 are red, 18 are black, and 1 is green. On each spin you bet $5 that a red outcome will occur and $1 that the green outcome will occur. If red occurs, you win a net $4. (You win $10 from red and nothing from green.) If green occurs, you win a net $24. (You win $30 from green and nothing from red.) If black occurs, you lose everything you bet for a loss of $6. a. Use simulation to generate 1,000 plays from this strategy. Each play should indicate the net amount won or lost. Then, based on these outcomes, calculate a 95% confidence interval for the total net amount won or lost from 1,000 plays of the game. (Round your answers to two decimal places and if your answer is negative value, enter "minus" sign.) I worked out the Upper Limit, but I can't seem to arrive at the correct answer for the Lower Limit. What is the Lower Limit?…arrow_forwardLet us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 0. What level of type II error would you recommend here? = Round your answer to four decimal places (e.g. 98.7654). Use α = 0.05. β = 0.0594 What sample size would be required? Assume the sample sizes are to be…arrow_forward
- Consider the hypothesis test Ho: 0 s² = = 4.5; s² = 2.3. Use a = 0.01. = σ against H₁: 6 > σ2. Suppose that the sample sizes are n₁ = 20 and 2 = 8, and that (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = 1.96 The critical value is f = 6.18 Conclusion: fail to reject the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/2/622 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) 035arrow_forwardUsing the method of sections need help solving this please explain im stuckarrow_forwardPlease solve 6.31 by using the method of sections im stuck and need explanationarrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL


