Concept explainers
Let
Where
Demonstrate that the union,
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
- Let f1(x)=3x and f2(x)=|x|. Graph both functions on the interval 2x2. Show that these functions are linearly dependent in the vector space C[0,1], but linearly independent in C[1,1].arrow_forwardLet S={v1,v2,v3} be a set of linearly independent vectors in R3. Find a linear transformation T from R3 into R3 such that the set {T(v1),T(v2),T(v3)} is linearly dependent.arrow_forwardLet u, v, and w be any three vectors from a vector space V. Determine whether the set of vectors {vu,wv,uw} is linearly independent or linearly dependent.arrow_forward
- Find an orthonormal basis for the subspace of Euclidean 3 space below. W={(x1,x2,x3):x1+x2+x3=0}arrow_forwardLet V be an two dimensional subspace of R4 spanned by (0,1,0,1) and (0,2,0,0). Write the vector u=(1,1,1,1) in the form u=v+w, where v is in V and w is orthogonal to every vector in V.arrow_forwardFind the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forward
- In Exercises 24-45, use Theorem 6.2 to determine whether W is a subspace of V. 34. ,arrow_forwardRepeat Exercise 41 for B={(1,2,2),(1,0,0)} and x=(3,4,4). Let B={(0,2,2),(1,0,2)} be a basis for a subspace of R3, and consider x=(1,4,2), a vector in the subspace. a Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B. b Apply the Gram-Schmidt orthonormalization process to transform B into an orthonormal set B. c Write x as a linear combination of the vectors in B.That is, find the coordinates of x relative to B.arrow_forwardFind a basis B for R3 such that the matrix for the linear transformation T:R3R3, T(x,y,z)=(2x2z,2y2z,3x3z), relative to B is diagonal.arrow_forward
- In Exercises 24-45, use Theorem 6.2 to determine whether W is a subspace of V. V=M22,W={[abcd]:adbc}arrow_forwardConsider the following two sets of Euclidean vectors: U {[₁]|2+52-0}__w-{[*]|2²−61} W = x+5y= = y 2 Explain why one of these sets is a subspace of R² and one is not.arrow_forwardIf v1 and v2 are in R" and H =Gen{v1, v2}, then H is a subspace of R" Justifyarrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage